
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.9

 69 This work is licensed under Creative Commons Attribution 4.0 International License.

Malware Sandbox Evasion Techniques in Mobile Devices

Yugandharee Sankaranarayanan
1
, Sarangan Ravindran

2
, Suhail Ahamed

3
and Kajanthan Balendraraja

4

1
Faculty of Computing, Cyber Security, SLIIT, Colombo, SRI LANKA

2
Faculty of Computing, Cyber Security, SLIIT, Colombo, SRI LANKA

3
Faculty of Computing, Cyber Security, SLIIT, Colombo, SRI LANKA

4
Faculty of Computing, Cyber Security, SLIIT, Colombo, SRI LANKA

1
Corresponding Author: it19017884@my.sliit.lk

ABSTRACT
The mobile platform is where it's at. There are

currently very few professionals who dispute this view.

Because of the rapidly increasing number of smartphones

and other devices powered by the Android operating system

all over the world, there has been a corresponding surge in

the number of mobile apps, particularly harmful mobile

apps. This form of malware is very new, but it is rapidly

changing, and it brings hazards that have not been seen

before. As a part of Check Point’s ongoing efforts against the

rising tide of mobile dangers, we, the Malware Research

Team, want to learn as much as we can about the constantly

shifting Android malware landscape. This requires

understanding the internal operation of as many malicious

apps as we can, so we can learn as much as we can. Manual

malware analysis has always been a difficult operation,

taking days or even weeks to complete for each sample.

Because of this, the work is impracticable even for a small

sample pool because of the amount of time it takes. Following

the successful application of this strategy to mobile malware,

our response is to automate as much of the analysis process as

is practically practicable. Idan Revivo and Ofer Caspi from

Check Point’s Malware Research Team were tasked with

developing a system that would take an application and

produce a report describing exactly what it does when it is

run, specifically pointing out anything "fishy." This would

enable us to perform an initial analysis with no human

intervention, which is exactly what they have done. The

popular CuckooDroid sandbox and a few other open-source

projects form the basis of this automated, cross-platform

emulation and analysis framework, which allows for static

and dynamic APK inspection in addition to evading some

VM-detection techniques, encryption key extraction, SSL

inspection, API call trace, basic behavioral signatures, and

more. It is easy to make changes and add new features to the

framework, and it draws heavily on the expertise of the

current Cuckoo community.

Keywords-- Malware, Android, Sandbox, Security, Mobile

I. INTRODUCTION

Hackers are employing the latest technology to

overcome defenses, making cyber assaults more

challenging by the day. After all, the only thing that counts

to a virus creator is that the product remains undetectable.

Whenever malware enters into touch with various

protective and analysis engines, such as a sandbox and an

anti-virus, it must be kept hidden and unobtrusive at first.

A sandbox is a network-based segregated workspace that

simulates end-user operating models. Sandboxes are used

to execute suspect programs without putting the host

device or network at risk. Using a sandbox for

sophisticated malware detection adds another layer of

defense against emerging security threats, such as zero-day

malware and subtle attacks. And what happens in the

sandbox stays in the sandbox, preventing malfunctions and

the propagation of software flaws. Sandboxes are divided

into several types, including applets, jails, and virtual

machines that run a guest operating system with restricted

or rule-based access to system applications. Application

sandboxes are the most common of these, as they allow

dangerous applications to operate in a separate operating

system without harming the host operating system. For the

running and testing of malware binaries, there are various

online and standalone sandboxes available. Anubis,

Cuckoo, Malwr, ThreatExpert, Comodo Instant Malware

Analysis, Joe Sandbox, FireEye Malware Analysis (AX

Series), and TrendMicro Dynamic Threat Analysis System

are just a few of the famous ones. In the future, sandbox-

evading malware is expected to become a common

powerful tool in the hands of hacktivists while ransomware

and zero-day exploits were considered as big threats in the

past decade. When considering mobile devices, there are

fewer detecting practices to find the malwares like in

computers. Lack of performance and precision on Built-in

malware identification systems in android devices, and

poor identification ability on exploit APKs and URLs

which violates data Privacy mechanisms harvesting user

data more than the required threshold. In this research, we

are focusing on finding ways to use malware sandbox

evasion techniques to detect the malware for android

mobile devices.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.9

 70 This work is licensed under Creative Commons Attribution 4.0 International License.

II. BACKGROUND AND LITRATURE

SURVEY

A. Sandbox

Sandboxes are designed to test for malwares.

Application can run in sandboxes, which are closed

environments, under close supervision. They enable

defenders to check both known malware and unknown

software for dangerous behavior in order to develop

behavioral signatures for use in anti-malware systems. In

order to confine the undesirable consequences of

potentially dangerous programs, these systems might be

physical devices (sometimes referred to as "bare-metal

sandboxes") with restricted network capabilities. Virtual

machines and other system emulators, however, offer a

scalable platform for building malware sandboxes because

of the enormous quantity of program executables that have

been analyzed.

As it was already said that the Android platform

has a greater market area, the "Google Play Store," the

major application marketplace on the Android, has almost

3 million applications accessible for download, and that

figure is growing every day [1]. It is hard to manually

analyze each app in light of the enormous surge of new

ones. Malware sandboxes are used to automate the

detection and removal of dangerous apps from the

environment by application marketplaces and security

companies.

B. CuckooDroid

CuckooDroid is a feature of Cuckoo Sandbox, an

open-source program for automatically analyzing dynamic

malware. It makes it possible for Cuckoo to run and

examine Android applications.

Cuckoodroid has two major components: a "host"

and a "guest." architecture of the CuckooDroid is shown in

Figure 1.

Figure 1: CuckooDroid Architecture

The android emulator is managed by Cuckoo

Sandbox, which also creates a report at the end of the

report. The application is executed by Android Emulator,

which then gathers data from it and reports it to Cuckoo

Sandbox. The description of a few of the major

components in figure 1 is provided above.

C. Malware

One-third of mobile devices are at medium to

high risk of data exposure, and Android smartphones are

roughly twice as likely as iOS devices to contain malware.

In this part, we will discuss some of the most common

mobile malwares.

Trojans

A Trojan is a piece of software that seems to the

user to be a harmless program but executes dangerous

operations in the background. Trojans are employed to aid

in the assault on a system by executing actions that may

weaken the system's security, allowing for easy hacking.

FakeNetflix is an example of a Trojan that harvests user

credentials for Netflix accounts in Android settings. The

Trojan KeyRaider was used to steal Apple IDs and

passwords.

Root exploits - back doors

Backdoors employ root access to hide malware

from antivirus software. Rage against the cage (RATC) is

a common Android root hack that allows complete device

control. If the root exploit achieves root power, the

malware can conduct any activity on the device, including

the installation of programs while the user is ignorant.

Xagent is an iOS Trojan that opens a back door and grabs

data from the attacked device.

Ransomware

Ransomware restricts users' access to their data

by locking the device or encrypting the data files until the

ransom is paid. Fake Defender is malware that

masquerades as Avast antivirus. For the purpose of money,

it locks the victim's device. In 2017, hackers exploited a

Safari weakness used for pop-ups to create an iOS

malware.

Botnets

A "bot" is a sort of malware that allows an

attacker to take control of an infected mobile device. They

are part of a network of infected computers known as a

"botnet," which is generally made up of all victim mobile

devices worldwide. Geinimi is a botnet for Android.

Spyware

Spying software is what spyware is. It runs in the

background undetected while collecting data or providing

remote access to its author. Android malware such as

Nickspy and GPSSpy observes the user's sensitive

information and sends it to the owner. Passrobber is an

example of iOS Spyware since it is capable of intercepting

outbound SSL traffic, checking for Apple IDs and

passwords, and sending these stolen credentials to a

command-and-control server.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.9

 71 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 2: Android malware and PUA amount

D. Malware Evasion Techniques

In their 2016-year results Kaspersky LABs

claimed that malware developers explored new methods to

circumvent Android security systems. To evade discovery,

malware authors must continually analyze mobile security

solutions and develop new ways. These are known as

evasion strategies, and they are detailed below.

Anti-security techniques:

These strategies are used to prevent detection by

security devices and applications such as anti-malware,

firewalls, and other environmental protection measures.

Anti-sandbox techniques

Sandboxing is a technique used to segregate

operating applications and therefore avoid any harm to the

computer system from untested apps. The anti-sandbox

technology is used to identify automated analysis and to

avoid reporting on malware activities. This is

accomplished by recognizing registry keys, files, or

processes associated with virtual environments.

Anti-analyst techniques

To avoid reverse engineering, these solutions

employ a monitoring tool. To monitor and detect malware,

analysts may use tools such as Process Explorer or

Wireshark.

E. Malware Analysis Techniques

Malware analysis for android applications is often

done in one of two ways: static analysis or dynamic

analysis or combination of both. The static analysis

examines several features without actually running the

application. The manifest file needed by the application is

a crucial asset that many frameworks examine. The

Android Manifest contains meta data about the specific

package name, utilized activities, services, broadcast

receivers, and content sources. It identifies the classes that

carry out these elements and makes their capabilities

accessible. The Android operating system uses this

knowledge to determine when each component must be

launched. The manifest also specifies the permissions

required to access the API's protected areas. Access to

particular hardware elements may be a sign of malicious

activities.

Analyzing the applications' byte code is another

tactic. The application's possible pathways cannot be

predicted because the code is not run and no variables are

set. Analysts can comprehend an application's internal

workings and the relationships between its code blocks

with the aid of graphs [2]. With that method, suspicious

API requests that access sensitive information can be

found. API calls that encrypt or decrypt data or run

external code are frequently used to obfuscate code, but

they may also be found through static analysis [3].

Checking each type of resource file in the Android

Application Package (APK) will reveal any external code.

Malware frequently conceals libraries in external files that

appear to be innocent in order to disguise suspicious API

calls. Dalvik Executable Files (.dex Files) are created

when Android apps are built. String searches are possible

in the disassembled.dex files. IP addresses that potentially

lead to command-and-control servers or data sinks for

sensitive information can be found by scanning these

strings for them. Androguard, which disassembles and

decompiles Dalvik byte code to Java source code, is a

well- known tool for static code analysis. That static code

analyzer is used by frameworks including Sanddroid,

Andrubis, and Tracedroid.

The program will run on either a virtual computer

or an actual device as part of the dynamic analysis

strategy. The analysis includes observing and analyzing

the application's activity. Compared to the static analysis,

the dynamic analysis produces a less abstract

understanding of the application. Only few of the possible

code pathways are actually used during runtime. High code

coverage is the fundamental objective for analysis

frameworks since all activities should be taken in order to

detect any potentially dangerous activity. According to

research, code coverage for fully randomized input is 40%

or below [4]. Various methods exist to keep an eye on an

application's behavior depending on the data of interest.

Taint tracking is one analytical method. Message flow

analysis and potential exploitation of private, sensitive

information by third-party apps are both possible with a

system-wide enabled taint propagation [6]. TaintDroid is a

widely used framework that employs that method. It tracks

the real-time access and manipulation of user data by apps

and was created with the Dalvik Virtual Machine. While

moving through variables, files, and messages, it marks the

sensitive data. But TaintDroid can only identify explicit

data flow; it cannot examine implicit flow through control

flow. That channel could be used to send sensitive

information [5].

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.9

 72 This work is licensed under Creative Commons Attribution 4.0 International License.

F. Existing android malware analysis sandboxes

When it comes to sandboxes, there are a few

frameworks, sandboxes, and analytic systems already

available for android sandboxes, as well as some that have

been proposed as well. Static approach was initially

employed to assess Android apps. A rudimentary system

that has been developed by Schmidt et al, utilizes the

"readelf" program to extract the function calls from an

Android application and compares the resultant list with

the information of identified malware [6]. Another

instance of the static analysis technique is “Androguard”, a

totally open-source system proposed by Desnos et al. In

this scenario, the system decompiles the application and

uses signature-based malware identification [7] [8]. It was

discovered that malware authors began to develop more

obfuscated code, which has demonstrated its efficacy

against static analysis, indicating that static analysis alone

is insufficient for those advancing malware. As a result,

researchers developed a dynamic analysis mechanism for

Android apps. The first solution with dynamic analysis that

offers real-time analysis by utilizing Android's runtime

environment is “TaintDroid” by Enck et al [5]. By Lantz

[9], a completely automated user emulation and reporting

system that goes by the name “Droidbox” was added to

this system. “Droidbox” is a powerful tool for analyzing

Android apps, however it doesn't have the ability to log

native API calls. The very first system integrating static

and dynamic analysis for the Android platform in a very

primitive manner was the AASandbox system by Bläsing

et al [10]. Sadly, it appears that AASandbox is no longer

being managed. DroidRanger is a system developed by

Zhou et al [11]. that combines static and dynamic analysis.

DroidRanger uses a mix of permission-based behavioral

foot prints to identify samples of existing well-known

malware families and a heuristic-based filtering method to

identify unidentified harmful groups.

III. METHODOLOGY

Our first journey into the world of study involved

looking through various historical records and

manuscripts. Because this strategy provided us with the

ability to take into account the three key obstacles that

were discussed earlier, we came to the conclusion that it

was the best one for us to adopt. In order for us to carry out

this automated research method, we made use of the

resources that were provided by IEEE, Science Direct,

Research Gate, and Medline (the version that is available

through PubMed). The search was limited to articles in

academic periodicals and journals that were exclusively

available in the English language between the years of

2010and 2022. Additionally, the works had to have been

evaluated by other specialists before they were published.

Throughout the course of the investigation, a number of

distinct search terms, such as "Analyzing the system

information like CPU core count, Digital system signature,

installed programs, OS reboots and hardware

components,"CuckooDroid Sandbox status research

papers," "Sandbox mobile application testing," "Android

applications malware detection," and "Mobile applications

malware testing," were utilized; these terms were all

owned by us for the purpose of finding the research papers.

In addition, the reference lists of studies that were included

because they satisfied the criteria for inclusion were

combed through in order to look for prospective research

that might fit those criteria and be added. As a result of our

investigation, we were made aware of a hole in the

research, and we proposed that it be filled by improving

the testing of the mobile applications troths CuckooDroid

Sandbox that were developed in relation to the analyzed

malware detection system that was developed by us. This

realization came about as a direct result of our having

discovered the hole in the research. The realization that

there was a gap in our knowledge initially sparked the

thought that we should do this. It is necessary to carry out

these steps in order for the gap to be filled.

As the second step to examine it and test Android

applications, the CuckooDroid sandbox first has to be

installed. There are three options for installing this

sandbox. Android on Linux Machine, Android Emulator,

Android Device Cross-platform. Using the first approach,

we have installed it. The data, which consists of android

application files, was gathered from the online sources. We

obtained around 30 samples from web surfing, and we also

obtained about 3000 samples from the Canadian Institute

for Cyber Security [12] by reading various study articles.

Even though we obtained many samples, we were unable

to test them all since CuckooDroid only supports Android

4.1.2, while our samples were unable to install on the

emulator due to an outdated SDK version.

IV. RESULTS AND DISCUSSION

Obad.A and EvadeMe were the primary two

applications we concentrated on. The older SDK version

problem prohibits the EvadeMe Application from being

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.9

 73 This work is licensed under Creative Commons Attribution 4.0 International License.

deployed and tested in the CuckooDroid environment.

However, a Virus Total scan was unable to identify the

EvadeMe program as malicious.

Figure 4: Virus Total Report of EvadeMe

Using the dex2jar tool, we converted the

EvadeMe app into a jar file and used Java decompiler to

examine it. The MainActivityKt class in that application

has various methods for retrieving device information that

may be used to verify the environment.

Figure 5: Snapshot of EvadeMe decomplication

CucukooDroid examined the "Obad.A"

application and generated a report. The report includes

information on permissions, signatures, fingerprints, and

other facts, but the issue is that CuckooDroid's report does

not mention of whether it is malware or not, unlike other

analysis reports. Although it employs the colors green and

red, it is difficult to determine if the app is harmful or not

based just on those hues.

The testing results show that the CuckooDroid

has excellent capabilities to deal with dynamically

developing malware, but it relies on out-of-date "virus

total" and "malware Cook book" information, making it

unable to identify newly evolving malware. Additionally,

identifying malware will become more important in the

future, thus CuckooDroid's malware detection features,

which may be used to find more advanced malware in

Android applications, should be enhanced.

V. CONCLUSION & FUTURE WORK

Due to Android's status as the leading mobile

operating system for smartphones, it has attracted the

attention of researchers and malicious software developers

alike. Despite the many proposed malware analysis

methods, the number of malicious apps specifically

developed to harm Android devices is growing at an

alarming rate. Technologies like sandboxing are available

for the detection such sophisticated malware but, modern

malware will nearly always try to detect and circumvent a

sandbox if one is present. When an application learns it is

running in a sandbox, it may opt to avoid doing anything

that could get it into trouble, such as deleting itself from

disks, terminating, or using some other evasion technique.

In this research, we analyzed CuckooDroid, an Android

malware detection tool that has several features, and the

ways to improve it to recognize dynamically changing

malware. Future work will test out simulated user behavior

in sandbox environments, fake networks, change and share

information about various system artifacts when malware

requests it, to demonstration the CuckooDroid to the

malware as a real environment and also improve the

Cuckoodroid malware detection signatures that are already

in place.

ACKNOWLEDGMENT

 This research was supported by the authority of

Sri Lanka Institute of Information Technology (SLIIT),

and we would like to express our gratitude towards them.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.9

 74 This work is licensed under Creative Commons Attribution 4.0 International License.

REFERENCES

[1] Kondracki, Brian, et al. (2022) The droid is in the

details: Environment-aware evasion of android sandboxes.

Proc. Network and Distributed Systems Security

Symposium (NDSS).

[2] Johannes Hoffmann. (2014). From mobile to security.

PhD Thesis, Ruhr-Universitt Bochum.

[3] Arp, Daniel, et al. (2014). "Drebin: Effective and

explainable detection of android malware in your pocket.

Ndss., 14.

[4] Gilbert, Peter, et al. (2011). Automating privacy testing

of smartphone applications. Technical Report CS-2011-02.

[5] Enck, William, et al. (2014). Taintdroid: An

information-flow tracking system for realtime privacy

monitoring on smartphones. ACM Transactions on

Computer Systems (TOCS), 32(2), 1-29.

[6] Schmidt, A-D., et al. (2009). Static analysis of

executables for collaborative malware detection on

android. IEEE International Conference on

Communications.

[7] Lilicoding, “Lilicoding/SA3Repo: A repository of

peer-reviewed publications in the field of static analysis of

Android apps,” GitHub. [Online]. Available at:

https://github.com/lilicoding/SA3Repo. [Accessed: 18-

May-2022].

[8] Desnos, Anthony & Geoffroy Gueguen. (2011).

Android: From reversing to decompilation. Proc. of Black

Hat Abu Dhabi, 1.

[9] “Droidbox – Android Application Sandbox,” The

Honeynet Project. [Online]. Available at:

https://www.honeynet.org/projects/active/droidbox/.

[Accessed: 12-Jun-2022].

[10] Bläsing, Thomas, et al. (2010). An android

application sandbox system for suspicious software

detection. 5th International Conference on Malicious and

Unwanted Software. IEEE.

[11] Zhou, Yajin, et al. (2012). Hey, you, get off of my

market: detecting malicious apps in official and alternative

android markets. NDSS, 25(4).

[12] “MalDroid. (2020). Datasets | Research |

Canadian Institute for Cybersecurity | UNB,” www.unb.ca.

[Online].Available:https://www.unb.ca/cic/datasets/maldro

id-2020.html.

