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ABSTRACT 
Numerical experiments on finite difference 

solutions of time dependent two-dimensional Navier-Stokes 

equations are used to study the transition triggering off in a 

mixing layer of initial tanh(y) profile. The inflow is excited 

by sinusoidal waves resulting from the linear theory of 

hydrodynamic instability. Numerical realizations are 

compared, through stream wise growth of momentum 

thickness and vorticity plots, with Winant and Browand 

experiments. 

The transition control and triggering off are 

studied through the finite difference solution of the two-

dimensional time dependant Navier-Stokes equations.  In a 

shear flow, the transition results from hydrodynamic 

amplification of unstable disturbances stimulated by 

perturbations of diverse origin.  In a unidirectional flow, 

the most unstable disturbances are two-dimensional 

transverse waves {2, 3} and experiments have shown the 

area where small disturbances grow exponentially 

{5,8,9,10}.  Thus, a two dimensional numerical simulation is 

well suited to the study of transition triggering off. 
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Nomenclature: 

U General Translation Velocity  αr Wave Number 

d Characteristic length β Angular Frequency 

 ̅ Mean Velocity c Phase Velocity 

   Rx, Rθ Reynolds Numbers ω vorticity 

λ Wave length ψ stream function 

 

 

I. NUMERICAL SIMULATION DESCRIPTION 

 

The simulation field is rectangular Fig. 1. We consider a mixing layer, with an initial mean velocity profile:  
                       ̅ = U +   

 
      

 

 
   (1) 

Where    is the velocity difference between the two layers and chosen as velocity scale, U the general translation 

velocity, and d a characteristic length.  In the dimensionless problem, with    =d =1, the momentum thickness is θ0 

=0.5. At upstream boundary, x=0 a second condition 
  

  
   is imposed on mean velocity. On this limit, some 

unsteady disturbances could be possibly superimposed.  For the two lateral boundaries, y = +h/2 reflection conditions 
  

  
  ,  ̅ = 0 are used in order to simulate free shear boundaries.  At x = 1, the outflow conditions are simply v = 0, 

  

  
   for instantaneous velocity. 

 

The Navier-Stokes equations are formulated in 

terms of the stream function ψ and vorticity   
  2

ψ and discretized over a grid of square meshes    

=      The vorticity advection is approached by an 

implicit second order scheme 7 which conserves both 

voritcity and square vorticity. In association with 

classical five points scheme for the Laplacian operator 

of Poisson’s equation for ψ, this scheme also 

conserves kinetic energy ( ψ)
2
/2.  In order to keep 

these important conservation properties for   in 

present numerical simulations, the viscous diffusion is 

approached by a scheme of Crank-Nikolson type.  The 

numerical code being designed in this way, the 

parabolic growth of a laminar mixing layer for the 

zero perturbation case is accurately described.  After 

this check the code is used for the simulation of 

transition.  A mixing layer of constant thickness is 

always unstable for sufficiently large transversal 

waves, whatever be the value of the Reynolds number 

Rθ = δUθ0/v = 1/2v, {1}. This result transposed in 

the present spatial growing case, suggests that any 

unsteady disturbances on the upstream boundary 

having energy in the low frequency range shall trig- ger 

off the transition into the simulation field. In order to 

reduce the computation field size and simultaneously 

the simulation cost, the inflow is excited with the 

most unstable wave for an hyperbolic tangent mean 

velocity profile.  which is represented in dimensionless 

form :
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                    R(y)cosβt +  I(y) sinβt) 

 

 ψI ,  ψR  (Fig.   1),  are  imaginary  and  real  

parts  of  normalized  eigen  function,  β  is  the angular 

frequency of this wave depending on the similitude 

parameters U and Rθ . Eigen functions for growing 

spatial case has been numericaly calculated by 

Michalke 4 for the case U = 0.5, Rθ = ∞. In this case 

the features of the unstable disturbance are, a wave-

number αr = 0.43129 a phase velocity C = 0.5127, 

an angular frequency β = αrC and a growth rate −αi 

= 0.228425.  These ψR, ψI , αr  values can be used in 

finite difference computations for other values of U 

and Rθ on condition that new angular frequency β are 

fixed with a U corrected Phase velocity C, on the 

assumption that eigen-modes, for a moving observator 

at U velocity, are practically independent of the 

parameters U and Rθ. 

 

 

 

 

 

 

II. RESULTS 
 

Numerical experiments has been done for a general 

translation velocity U = 1.0496 accord- ing to the 

experimental parameters of Winant and Browand 8. 

For this case, the corrected frequency is β = 0.4282. A 

grid of 118x32 square meshes, δX = 1, has been used. 

The thickness δ0.99 of the hyperbolic tangent profile is 

discretized by five points and the perturbation wave 

length λ = 2π/αr by approximately 15 points. The 

computed field is about 8 wavelength λ long. There is 

about 23 time steps fixed at δt =δX/(0.5 + U ) = 

0.667, for one perturbation period. 

The first realisation R5 is calculated for  Rθ  = 

12.5,  the amplitude of imposed perturba- tion ϵ = 

0.03 is inferred from experimental values of root-

mean square velocity {8}. The realization reaches a 

steady state at a dimensionless time of about t = 200. 

The config- uration of the resulting flow is basically 

laminar. The growth of momentum thickness is 

parabolic according to experiments and theory, Fig. 

2.

 

 
Figure 1: Left: Simulation domain grometry and steady boundary conditions Right: Eigen-functions of most 

unstable disturbance from Michalke 

Figure 2: Stream wise growth of momentum thickness θ(x), Rθ, Rx; laminar Reynolds range 

 

One other realization R6 has been done for Rθ  

= 40 and ϵ  = 0.141. This Reynolds value is related to 

the onset of the transition in experiments above which 

the momentum thickness θ(x) growth becomes linear. 

Contrary to experiments the strem wise amplification 

disturbance is quickly bounded by the non-linear 
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interactions. A steady of vortex cores passed through 

the computed field without vortex merging Fig. 4a. 

The growth of θ(x) remains parabolic in an over-

saturated laminar configuration Fig. 3, this result 

seems to confirm the existence of finite amplitude 

steady state {3, 6}. 

 
Figure 3: Stream wise growth of momentum thickness θ(x), transitional Reynolds range 

 

The whole picture changes when there is a noisy 

disturbance in the flow. The R8 realization duplicates 

R6 with a Gaussian noise of .05 standard deviation 

superimposed on inflow excitation function. Then the 

structure of the computed flow Fig. 4b is totally 

different. We observe an unstable vorticity sheet which 

gives rise to a row of rolling-up vortices. This 

configuration change, is also observed on the stream 

wise growth of momentum thickness θ, Fig. 3, which 

deviates from the laminar regions to catch up with 

the domain of linear experimental variation. 

 

Figure 4: Printer iso-vorticity plot:(a): without noise R6(b): with Gaussian noise on exci tation R8 
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