
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.21

 156 This work is licensed under Creative Commons Attribution 4.0 International License.

Virtual DOM Implementation in KissJS

M.W.M.R.C.T.B. Madigasekara
1
, S.P.P.P. Wanigarathne

2
, P.D.G.N.T.D. Dharmasinghe

3
, Dr. Nuwan Kodagoda

4
,

A.G.S.D. Wickramarathna
5
 and Dr. Jeewaka Perera

6

1
Faculty of Computing, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

2
Faculty of Computing, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

3
Faculty of Computing, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

4
Faculty of Computing, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

5
Faculty of Computing, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

6
Faculty of Computing, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

1
Corresponding Author: chandula.madigasekara@gmail.com

ABSTRACT
In this fast-paced modern world, time is a major

asset for most people, including web developers. When

developing web applications, the language or framework

being used should help the developer create applications

fast and efficiently, but at the same time it should be simple

enough for them to grasp it quickly.

This proposed framework takes into

consideration the pros and cons of modern Single Page

Application (SPA) development frameworks and tries to

use some their approaches to achieve efficiency, and at the

same time use its own ways to simplify other tasks that are

complex in the aforementioned frameworks.

The main objective this framework will try to

accomplish is simplify the state management process.

However, this paper will focus on the change detection

aspect of the framework. The method of change detection

used in the framework is the virtual DOM. Reasons for

moving forward with this approach will be discussed later

in the paper.

Keywords— SPA, Virtual DOM, Change Detection

I. INTRODUCTION

Since the creation of JavaScript back in 1995, it

has greatly evolved into one of the most used

programming languages worldwide [1]. As it has been

more than 20 years since its making, a great number of

libraries and frameworks have been implemented using

JavaScript as the language [1]. A subset of these

frameworks are frontend UI frameworks. Most modern

websites leverage JavaScript in order to make webpages

more interactive and to have a wide range of interactivity

[2].

 Traditional websites are usually a collection of

webpages, where a new HTML document is loaded every

time its content changes [2], however, this approach is

very resource intensive. A majority of the modern web

applications however, use a Single Page Application

(SPA) development model [2]. This approach revolves

around using a single HTML document where only

components that are changed are updated, thus,

drastically reducing the application loading speed [2].

Single page applications are increasing in popularity in

current times, and the JavaScript frontend frameworks

they are built from are also becoming increasingly

popular. Many people would agree that from these

frameworks, the top three most popular frameworks are

React, Vue and Angular [7, 8].

With the emergence of all these new

frameworks SPAs are becoming more prevalent, also

due to their various advantages such as dynamic loading,

URL routing, HTML rendering and the caching of data

for faster loading times [9]. And the three frameworks

mentioned above are the most popular frameworks to use

for the development of SPAs so they will be the main

comparison for this research.

This research component will focus on

effectively re-rendering components, that is using the

most efficient approach to re-render components,

minimizing the time taken for changes to be seen. The

following sections of this paper will look at the different

approaches available for change detection and selecting

the most suitable approach.

II. RELATED WORK

When taking into consideration the re-rendering

of DOM elements, the framework must first determine if

re-rendering of that element is necessary. According to

the article published by Tero Parviainen [5], a multitude

of change detection mechanisms are available for use in

JavaScript frameworks. Some of these methods include:

Server-side rendering, manual re-rendering, data binding,

dirty checking, virtual DOM and key-value observation

(KVO).

 Out of the above-mentioned methods, only dirty

checking, virtual DOM and KVO were considered for the

change detection mechanism, since these are the most

prominent and commonly used techniques.

 Key-Value Observation (KVO)

 This mechanism utilizes change events and

change listeners to make the necessary changes once

updates have been detected. This uses the

Publisher/Subscriber design pattern, and by doing so it

maintains an event channel between the objects that fire

events and the objects that want to receive those

notifications [3].

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.21

 157 This work is licensed under Creative Commons Attribution 4.0 International License.

Using this method, whenever some action in the UI

changes some underlying data, a change event is

triggered and the model is updated, thus updating all the

views that are displaying the specific data [3].

 Dirty Checking

 This method is more commonly used by the

Angular framework. With this, whenever there is a

possibility that data has changed, a loop known as the

change or digest cycle is executed to see if any of the data

has actually changed. This process, however is quite

expensive since it has to traverse all the data that is being

watched and compare them to their previous values. So, it

is crucial that this cycle is executed only when needed

[3].

 The actual “dirty checking” will happen inside

the digest cycle. Once it has detected that the current

value of some data differs from its previous value, its

watcher is notified once the digest cycle is complete. The

advantage of notifying watchers after a cycle is

completed is that multiple changes can be detected in one

cycle [3].

 The process following after a watcher has been

notified is it would update the model, and this in turn

would fire off other listeners. This dirty checking

approach gives Angular its two-way data binding

capability. This means that whenever a watched element

is changed in the DOM, the change is reflected in the

model, and the vice-versa holds true.

 Virtual DOM

 The concept of the virtual DOM is not

something that is new, however it was only made relevant

by Facebook, now known as Meta, with their creation of

React [6]. With this method a vanilla JavaScript object is

constructed that is a representation of the DOM, and this

is known as the virtual DOM. Each time a change occurs

a new virtual DOM is constructed and the new and

previous copies and compared in order to identify the

changes. Once they have been identified they are used to

update the actual DOM.

The virtual DOM is only part of the re-rendering

process. In order to fully utilize the virtual DOM a diff

algorithm must be introduced to effectively compare the

two virtual DOMs so that the differences can be found as

efficiently as possible.

 Various researches have been carried out in

order to find which change detection mechanism was

indeed the best [3, 4]. From the results of these papers we

can conclude that one method cannot be selected as the

best, as each approach excels at certain scenarios but does

not perform as well in others. However, by considering

the overall performances of the mechanisms in all the

scenarios tested, it could be concluded that the virtual

DOM is a valid candidate to ensure minimal re-render

times. For that reason, the change detection mechanism

used for this framework was the virtual DOM.

III. METHODOLOGY

 As mentioned previously, in order to proceed

with change detection, the framework uses the virtual

DOM approach as opposed to the other methods available

due to its better overall performance. However, the

virtual DOM by itself cannot handle the change detection

process, it is only half of the full mechanism.

 To fully utilize the virtual DOM and maximize

its efficiency, a diff algorithm was implemented. The

purpose of this algorithm is to find the changes that were

made to the elements in order to reflect those changes in

the actual DOM.

 In order to work in harmony with the diff

algorithm, the virtual DOM was implemented as follows,

the virtual DOM was a collection of virtual DOM nodes

that were nested in each other representing a tree-like

structure, similar to that of the original DOM. Each

virtual DOM node represents an actual node in the DOM.

Each virtual DOM node has the following attributes: a

type, tag name, attributes and children. There are only 2

types of nodes in this framework, Node type and Text

type. Node type nodes will have other nodes nested

within them, whereas Text type nodes will only have a

text value, meaning they are the final or leaf nodes of the

virtual DOM tree. The tag name attribute basically

identifies what kind of HTML element it is, for example,

a div (<div>) or a list item (). The children attribute is

an array of nodes that are nested directly under the

current node.

 So as to actually detect changes, two copies of

the virtual DOM are made. The latest changes to the

nodes are stored in one copy while the previous changes

are stored in the other. The diff algorithm then loops

through both copies in order to identify which nodes have

undergone any changes.

In the framework, for a change to be detected, it

must be in one of the following four forms: a node was

appended, replaced, or removed from the virtual DOM,

or there was a change in the value of the node’s attributes

or text. Once one of these changes is detected the

framework will add these changes to an array of Patches.

Each Patch contains information on the node that has

changed and what kind of change has occurred.

 As soon as the diffing process is over the array

of Patches is looped through, and the respective nodes are

updated depending on the kind of change that has

occurred. When these updates are done the original DOM

will be updated and this completes one successful cycle

of the change detection mechanism implemented in this

framework.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.21

 158 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 1: High level overview of change detection mechanism

 As mentioned previously the diffing process will

be handled with the help of a diffing algorithm. It handles

the diffing by comparing two nodes of the two virtual

DOMs that are at the same hierarchy level in the virtual

DOM.

 Firstly, a conditional statement checks if the two

nodes are exactly equal to one another, meaning both

their types and values are the same. Since the framework

implementation language used was JavaScript, the “===”

operator was used for this check. If the nodes are indeed

equal no further operations will be performed and the

algorithm will move onto the next pair of nodes.

 In the case that the check fails, it indicates that

the two nodes are different, meaning a change will have

to be made. When this happens, the first condition hecked

is the type of the node, i.e. if it is a Node type a certain

set of actions will take place, if it is a Text type a

different set of actions will occur.

 If the node in question is of type Text, the

procedure is simple. A Text node with the updated value

is appended to the array of Patches. If the node is of type

Node, a check is first performed to see if there is a change

in attributes. In the case that it is so, it will be added to

the array of Patches and if not no changes will occur.

Next, the children of the node are checked. The algorithm

runs recursively so the above steps are repeated for the

children of the node.

IV. RESULTS AND DISCUSSION

 For the purpose of measuring the performance

of the framework’s change detection mechanism, it was

tested against the frameworks React and Vue, in order to

gain an idea about where the framework stands in terms

of the efficiency of rendering elements.

 A simple application was created using the

different frameworks. It consisted of four buttons: “Add

5”, “Add 10”, “Add 100”, “Reset”. On the click of these

buttons the application would render five, ten, one

hundred and remove Todo items, respectively. Each Todo

item was a simple div with a border and a text indicating

which Todo it was (for example: Todo 5).

The tests were run on an HP Pavilion 15ccx with the

following specifications:

 Processor – Intel(R) Core(TM) i5-8250U CPU @

1.60GHz 1.80Hz

 Installed memory(RAM) – 8.00 GB

 System type – 64-bit Operating System, x64-based

processor

The render times were measured using the

Performance tools of the Google chrome devtools. This

gave the capability to record actions on the screen and

would give various measurements including the render

times.

 The method in which the test was carried out

was the application was served on the localhost and the

“Add 5” button was clicked, afterwards the “Reset”

button was clicked. The render time for this operation

was then recorded. These steps were then repeated

without restarting the application. The purpose of this is

to get the render times with the initial load and after the

initial load.

 The steps mentioned above were repeated five

times for each button in order to get an average estimate

for the render times. The results obtained are as follows.

Table I: Average render times for react application

Action
Average Render Time (ms)

Initial Load Normal

Add 5 20.2 8.0

Add 10 22.4 8.6

Add 100 23.0 13.2

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.21

 159 This work is licensed under Creative Commons Attribution 4.0 International License.

Table II: Average Render times for Vue application

Action
Average Render Time (ms)

Initial Load Normal

Add 5 11.4 7.5

Add 10 12.0 8.2

Add 100 16.0 11.6

Table III: Average render times for kissjs application

Action
Average Render Time (ms)

Initial Load Normal

Add 5 12.6 7.6

Add 10 13.4 8.4

Add 100 14.8 9.0

From the results obtained, it can easily be seen

that the React application clearly takes the most time to

render the items on the initial load. In comparison to that,

the Vue application rendered items much faster on the

initial load. However, when rendering the one hundred

Todos, the KissJS application was recorded having the

lowest render time.

 Similar results can be observed for the normal

render times. React having the highest times, although the

difference is minute compared with the times observed

for the other two frameworks. The Vue application

recorded the least times again, except for the one hundred

Todos, where the KissJS application recorded the least

time.

 When taking into consideration all the results

obtained overall, the difference in the render times is

insignificant. However, the difference in the initial load

times was quite noticeable, with the React application

taking approximately 9 milliseconds longer than the other

two applications in all the actions performed.

 The KissJS application fared quite well in

comparison to the Vue and React application, with it

having faster render times than the React application in

all the tests and just slightly higher times than the Vue

application. Nonetheless, it managed to maintain the

lowest render times for when the one hundred Todos

were generated.

 React provides an in-built solution to allow the

developer to control which elements they want to re-

render when a change occurs, the

shouldComponentUpdate() method. This function was

not implemented in the React application that was tested

since the application was quite small and it is used to

maximize the performance of a large application. The

implementation of the function in this application would

have only lowered the normal render times and not the

initial load times.

 The performance of all the applications could

also have been improved by using a PC with better

specifications.

V. CONCLUSION

In conclusion, the change detection mechanism

of the newly created framework, KissJS, is the virtual

DOM. This was chosen due to its better overall

performance in comparison to the other change detection

methods available, such as KVO and dirty checking.

 The virtual DOM along with the diff algorithm

implemented for the framework provides the framework

with an efficient means to detect changes in the

underlying code and reflect them in the DOM.

 The performance of the KissJS virtual DOM and

diff algorithm was tested by creating the same application

with the KissJS, React and Vue frameworks and

comparing the render times of performing different

actions. React and Vue were chosen as the frameworks to

compare with since they also implement a virtual DOM

and diff algorithm.

From the results obtained it could be seen that

the KissJS application recorded faster times than the

React application and only slightly slower times than the

Vue application. A key observation was that the KissJS

application recorded the fastest times when more

elements needed to be rendered on the screen. It could be

deduced from this that the framework scales well when

the application grows. This was another goal of the

framework’s change detection mechanism, i.e. to

maintain render times as the application grows. This was

also another reason that the virtual DOM was selected for

this framework since frameworks that utilize other

change detection strategies, such as Angular with dirty

checking, tend to take longer to find and render changes

as the application gets larger.

 The KissJS framework, therefore has a fairly

efficient change detection mechanism, and with future

work and optimizations the render times could be further

improved.

ACKNOWLEDGMENT

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.21

 160 This work is licensed under Creative Commons Attribution 4.0 International License.

 This research was supported by the Sri Lanka

Institute of Information Technology CDAP module. I am

especially thankful to our research supervisor, Dr. Nuwan

Kodagoda, and co-supervisor, Dr. Jeewaka Perera, for the

continued support they provided throughout the duration

of the project. I would also like to thank my team

members for the support they provided me in completing

this component of the framework.

REFERENCES

[1] E. Wohlgethan. (2018). Supporting web development

decisions by comparing three major javascript

frameworks: angular, react and Vue.js. Hamburg

University of Applied Sciences, J. Clerk Maxwell, A

Treatise on Electricity and Magnetism, 3rd ed., vol. 2.

Oxford: Clarendon, 1892, pp.68–73.

[2] E. Saks. (2019). JavaScript frameworks: Angular vs

React vs Vue. University of Applied Sciences.

[3] M. Grov. (2022). Building user interfaces using

virtual DOM. M.S. Thesis, Dept. of Inform., Univ. Oslo.

Accessed on Jan. 20, 2022. [Online]. Available:

https://www.duo.uio.no/handle/10852/45209.

[4] D. Muyldermans.(2019). How does the virtual DOM

compare to other DOM update mechanisms in JavaScript

frameworks?. Accessed: Jan. 24, 2022. [Online].

Available: http://www.daisyms.com/THESIS.pdf.

[5] “Change And Its Detection In JavaScript

Frameworks,” teropa.info. Available at:

https://teropa.info/blog/2015/03/02/change-and-its-

detection-in-javascript-frameworks (accessed Jan. 22,

2022).

[6] R. Hakulinen. (2022). Using immutable data

structures to optimize angular change detection. M.S.

Thesis, Tampere Univ. Tech. Accessed on Jan. 19, 2022.

[Online]. Available:

https://trepo.tuni.fi/bitstream/handle/123456789/26217/

Hakulinen.pdf?sequence=4.

[7] “Top 10 Most Popular JavaScript Frameworks for

Web Development - GeeksforGeeks.”

https://www.geeksforgeeks.org/top-10-most-popular-

javascript-frameworks-for-web-development/ (accessed

Jan. 19, 2022).

[8] “Best Front End Frameworks For Web Development

- InterviewBit.” https://www.interviewbit.com/blog/best-

front-end-frameworks/ (accessed Jan. 19, 2022).

[9] “Top 5 Single Page Application Frameworks To Use

in 2022.” https://www.monocubed.com/top-single-page-

application-frameworks/ (accessed Jan. 22, 2022).

https://www.duo.uio.no/handle/10852/45209
http://www.daisyms.com/THESIS.pdf
https://teropa.info/blog/2015/03/02/change-and-its-detection-in-javascript-frameworks
https://teropa.info/blog/2015/03/02/change-and-its-detection-in-javascript-frameworks
https://trepo.tuni.fi/bitstream/handle/123456789/26217/Hakulinen.pdf?sequence=4
https://trepo.tuni.fi/bitstream/handle/123456789/26217/Hakulinen.pdf?sequence=4
https://www.monocubed.com/top-single-page-application-frameworks/
https://www.monocubed.com/top-single-page-application-frameworks/

