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ABSTRACT 
This paper presents an error-detection method for 

Euclidean Geometry low density parity check codes with 

majority logic decoding methodology in VHDL language 

and the output is verified with the help of Xilinx12.1. 

Majority logic decodable codes are suitable for memory 

applications due to their capability to correct a large 

number of errors. However, they require a large decoding 

time that impacts memory performance. The proposed 

fault-detection method significantly reduces memory access 

time when there is no error in the data read. The technique 

uses the majority logic decoder itself to detect failures, 

which makes the area overhead minimal and keeps the 

extra power consumption low. Starting from the original 

design of the ML decoder introduced, the proposed ML 

Detector/Decoder (MLDD) has been implemented using the 

Euclidean Geometry low density parity check codes. The 

proposed improved majority logic detector/decoder to 

perform data error correction in simple way using 

additional error correction technique and also reducing the 

delay time by detecting the errors in parallel manner. 

Hence the decoding process uses less number of cycles 

which reduces the delay. 
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I. INTRODUCTION 
 

Memories are the most universal component 

today but they are prone to errors like soft and transient 

errors. Single Event Upsets (SEU) is the type of fault 

which alters these memories by changing its states which 

is caused by ions or electro-magnetic radiations. SEU 

occurs in digital circuits when an energized particle, or 

electron, causes a transistor to flip on or off from its 

correct state. This happens in microcircuits, including 

memory chips, communication devices, power circuits, 

and microprocessors. Such a flip of one bit can cause a 

computer or other electronic device to lockup or crash. 

Circuit components, including configuration memory 

cells, user memory, and registers, can also be affected. 

Some type of embedded memory, such as ROM, SRAM, 

DRAM, flash memory etc is seen in almost all system 

chips.  

 Soft errors that are predominantly caused by 

external radiation are also known as SEUs. They result in 

transient, inconsistent errors in data that are unrelated 

to components or manufacturing failures. Intrinsic noise 

and interference can also cause SEUs; however, design 

engineers can accommodate these causes. SEUs manifest 

themselves as either SBUs (single-bit upsets) or MBUs 

(multiple-bit upsets). "SBU" refers to the flipping of one 

bit due to the passage of a single energetic radiation 

particle, where the physical separation from any other 

flipped bit is at least two memory cells. MBU refers to  

the flipping of several  elements due to  the passage 

of one or more radiation particles. At the system level, 

designers can mitigate the increase in SER for SRAMs 

by using ECC (error-correction-code) detection and 

correction so that every addressable word of data stored 

in memory includes check information .The combination 

of data and check information is often called a check 

word. The consequence of a memory error is system-

dependent. In systems without ECC an error can lead 

either to a crash or to corruption of data in large-scale 

production sites memory errors are one of the most 

common hardware causes of machine crashes. Memory 

errors can cause security vulnerabilities. Cyclic block 

codes have the property of being Majority Logic (ML) 

decodable. Therefore cyclic block codes have been 

identified as more suitable among the ECC codes that 

meet the requirements of higher error correction 

capability and low decoding complexity. Euclidean 

Geometry Low-Density Parity Check (EG-LDPC) codes, 

a subgroup of the Low-Density Parity Check (LDPC) 

codes, which belongs to the family of the ML decodable 

codes. The ML decoding are that it is very simple to 

implement and thus it is very practical and has low 

complexity. An error-correcting code (ECC) or forward 

error correction (FEC) code is a system of adding 

redundant data, or parity data, to a message, such that it 

can be recovered by a receiver even when a number of 

errors (up to the capability of the code being used) were 

introduced, either during the process of transmission, or 

on storage. Since the receiver does not have to ask the 
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sender for retransmission of the data, a back- channel is 

not required in forward error correction, and it is 

therefore suitable for simplex communication such as 

broadcasting. 

 

II. PROPOSED SYSTEM 
 

 Majority Logic Detector/Decoding (MLDD) 

technique is generally based on number of parity check 

equations. These check equations are the results of XOR 

gates. The inputs to the XOR gates are the fifteen bit data 

which are stored in the shift registers. A generic 

schematic of memory system is depicted in Fig .1.In this 

Fig the input data is sent to the encoder and stored in the 

memory. The decoding process is done in the MLDD.

 

 

Figure 1: Memory system schematic of MLDD 

 

The codeword used in this technique is the EG-

LDPC code (Euclidean Geometry -Low Density Parity 

Check).It is the One Step Majority Logic Decodable 

code. This code uses the check sum algorithm. The check 

sum algorithm is nothing but a numerical value is 

associated with the code word to be transmitted. Then the 

code word received at the receiver end has some 

numerical value. There is a comparison on the associated 

numerical values to detect the error. The existing method 

is implemented using simple hardware. The decoding 

time for this method is more. Also the power 

consumption and area requirement are high. To detect 

the errors serially the MLDD technique uses Serial One 

Step Majority Logic Decoder. The serial one step 

majority logic decoder is depicted in Fig.2. 

It is the One Step Majority Logic Decodable 

code. This code uses the check sum algorithm .The 

check sum algorithm is nothing but a numerical value 

is associated with the code word to be transmitted. Then 

the code word received at the receiver end has some 

numerical value. There is a comparison on the 

associated numerical values to detect the error. The 

existing method is implemented using simple hardware. 

The decoding time for this method is more. Also the 

power consumption and area requirement are high. To 

detect the errors serially the MLDD technique uses 

Serial One Step Majority Logic Decoder. The serial one 

step majority logic decoder is depicted in Fig.2.

 

 

Figure 2: Serial one-step majority logic decoder for the (15,7)            EG-LPDC code 

 

In this decoder 15 bit data is first stored in the 

cyclic shift register. Then the inputs are assigned to the 

XOR gates. Since there is 15 bit data the XOR gates 

required are four. The bit to be detected should be given 
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as one of the inputs for all the XOR gates. The outputs of 

the XOR gates are the check sum equations. The check 

sum equations consist of binary data. Then the Majority 

circuit outputs the data which is in major number. If the 

output of the majority circuit is „1‟ then the 

corresponding bit has the error else the bit is error free. 

The schematic of the MLDD is shown in Fig.3. It 

consists of cyclic shift registers, XOR matrix, Majority 

gate, control unit, tri state buffers and XOR gate. In this 

schematic the control unit has the important 

characteristic. It stores the result of three iterations. After 

receiving the results of three iterations it sends “finish” 

signal to the tri state buffer which indicates the data is 

error free. The tri state buffer is in high state until it 

receives the finish signal. After receiving the finish 

signal it goes low and outputs the current data from 

cyclic shift register. The output of the buffer is the 

detected data. 

 

 

Figure 3: Schematic of MLDD with Control unit 

 

In the proposed technique the error detection 

process is done in parallel and in pipelining manner. The 

iteration required for detection is only one. Thus the 

delay time is comparatively low. Also the power 

consumption and the area requirement is low. 

Considering the Fig.2. The entire 15 bit data is detected 

simultaneously in single iteration. But the cyclic shift is 

same as in serial error detection process. Error detection 

process is also done in pipelining manner. In this process 

area requirement is further reduced compared to parallel 

processing. 

 

III. ALGORITHMS 
 

1. MLD Algorithm 

Among the ECC codes that meet the 

requirements of higher error correction capability and 

low decoding complexity, cyclic block codes have been 

identified as good candidates, due to their property of 

being Majority Logic (ML) decodable. A subgroup of the 

Low-Density Parity Check (LDPC) codes, which belongs 

the main reason for using ML decoding is that it is very 

simple to implement and thus it is very practical and 

has low complexity. The drawback of ML decoding is 

that, for a coded word of N-bits, it takes N cycles in 

the decoding process, posing a big impact on system 

performance to the family of the ML decodable codes. 

One way of coping with this problem is to implement 

parallel encoders and decoders. This solution would 

enormously increase the complexity and, therefore, the 

power consumption. As most of the memory reading 

accesses will have no errors, the decoder in most of the 

time is working for no reason. This has motivated the use 

of a fault detector module that checks if the codeword 

contains an error and then triggers the correction 

mechanism accordingly. In this case, only the faulty code 

words need correction, and therefore the average read 

memory access is speeded up, at the expense of an 

increase in hardware cost and power consumption. A 

similar proposal has been presented in for the case of 

flash memories. The simplest way to implement a fault 

detector for an ECC is by calculating the syndrome, but 

this generally implies adding another very complex 

functional unit. This paper explores the idea of using the 

ML decoder circuitry as a fault detector so that read 

operations are accelerated with almost no additional 

hardware cost. 
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2. MLDD Algorithm 

The Difference Set Cyclic Codes (DSCC) used 

in the majority logic decoding technique has the 

drawback of detecting the errors for N clock cycles. This 

drawback is overcome in Majority Logic 

Detector/Decoding (MLDD) technique. The code used 

in this algorithm is Euclidean Geometry- Low Density 

Parity Check Codes (EG-LDPC). It is One-Step Majority 

Logic Decodable technique. The algorithm embedded 

here is Check Sum algorithm where a numerical value is 

always associated with the data to be transmitted over the 

memory. So that the data received at the receiver side is 

verified by using the numerical value. This process is 

feasible for three decoding cycles where most of the 

errors are detected. 

 

Flow Chart of  MLDD Algorithm 

 

 

Figure 4: Flow Diagram Of The MLDD Algorithm 

 

3. Low Density Parity Check (LDPC) 

A Low-Density Parity-Check (LDPC) code is a 

linear error correcting code, a method of transmitting a 

message over a noisy transmission channel, and is 

constructed using a sparse bipartite graph. Low Density 

Parity-Check code (LDPC) is an error correcting code 

used in noisy communication channel to reduce the 

probability of loss of information With LDPC, this 

probability can be reduced to as small as desired, thus the 

data transmission rate can be as close to Shannon's limit 

as desired. LDPC codes are capacity-approaching codes, 

which means that practical constructions exist that allow 

the noise threshold to be set very close to the theoretical 

maximum (the Shannon limit).for a symmetric memory-

less channel. The noise threshold defines an upper bound 

for the channel noise, up to which the probability of lost 

desired LDPC codes are finding increasing use in 

applications  requiring reliable and highly efficient 

information transfer over bandwidth or return channel 

constrained links in the presence of data corrupting noise 

An LDPC code beat six turbo codes to become the 

error correcting code in the new DVB-S2 standard for 

the satellite transmission of digital television. LDPC beat 

convolution turbo codes as the FEC scheme because of 
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its lower decoding complexity. The name comes from 

the characteristic of their parity-check matrix which 

contains only a few 1‟s in comparison to the amount of 

0‟s. Their main advantage is that they provide a 

performance which is very close to the capacity for a lot 

of different channels and linear time complex algorithms 

for decoding. 

4. Euclidean Geometry Low-Density Parity Check (EG-

LDPC) Codes 

Euclidean Geometry Low-Density Parity Check 

(EG-LDPC) codes, a subgroup of the Low-Density Parity 

Check (LDPC) codes, which belongs to the family of the 

ML decodable codes, is focused here. Euclidean 

Geometry codes are also called EG-LDPC codes based 

on the fact that they are Low-Density Parity Check 

(LDPC) codes. LDPC codes have a limited number of 

1‟s in each row and column of the matrix; this limit 

guarantees limited complexity in their associated 

detectors and correctors making them fast and light 

weight. Let EG be a Euclidean Geometry with points and 

J lines. EG is a finite geometry that is shown to have the 

following fundamental structural properties are 

 Every line consists of points 

 Any two points are connected by exactly one line 

 Every point is intersected by lines 

 Two lines intersect in exactly one point or 

they are parallel i.e., they do not intersect 

 

IV.  SIMULATION RESULTS 
 

 Simulation results are shown for three 

blocks such as for encoder, memory, majority logic 

decoder/detector with control and for final serial majority 

logic decoder. 

Simulation Result for Encoder
 

Figure 5: Simulation Result of Encoder 

 

Figure 5 shows the simulation result of an 

Encoder. The data input to given to the memory is 

encoded first through this encoder block. The input to the 

encoder is the 7 bit information and output is the 15 bit 

information. The signal output is form s1 to s8. 

Simulation Result of Memory
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Figure 6: Simulation Result of Memory 

 

Figure 6 shows the simulation result of the 

memory. The data in and data out of the memory is the 

15 bit information taken from the encoder. The 

temporary RAM is used as memory element. The clock 

event is used to read from the memory and write data to 

the memory. The memory address of the particular data 

is also specified. 

Simulation Result of One-Step Majority Logic Decoder 

 

Figure 7: Simulation Result of One-Step MLD. 
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Figure 7 shows the output of the Serial Majority 

logic decoder. In this decoder the data read from the 

memory is given as serial input to the decoder. The data 

is verified whether it is with error or without error by 

serial cyclic shifting. This method is called One Step 

Majority Logic Decoding. 

Simulation Result of  Parallel MLDD

 

Figure 8:  Simulation Result of Parallel MLDD 

 

Figure 8. shows the output of the parallel 

Majority logic decoder. In this decoder the data read 

from the memory is given as parallel input to the 

decoder. All codeword bits are decoded at the same 

time. The data is verified whether it is with error or 

without error in single iteration. 

Power Analyzer 
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Figure 9:  Power consumed by serial MLD 

 

Figure 9 shows the total power consumed by the 

serial majority logic decoding technique. 
Synthesis of Area

Figure 10: Area consumption for the serial MLD 



 International Journal of Engineering and Management Research         e-ISSN: 2250-0758  |  p-ISSN: 2394-6962 

     Volume-12, Issue-6, (December 2022) 

www.ijemr.net                                                                                              https://doi.org/10.31033/ijemr.12.6.31  

  

  232 This work is licensed under Creative Commons Attribution 4.0 International License. 

 

Figure 10 shows the area requirement of the 

serial majority logic decoding technique 
Timing Constraint 

Figure 11: Delay Constraint for the Serial MLD 

 

Figure 8.8 shows the delay time of the serial 

majority logic decoding technique for the error correction. 

The proposed method has been applied to one step 

majority logic decoding EG-LDPC codes. The results are 

presented with the help of VHDL simulation. For codes 

with minimum words and affected by a minimum 

number of bit flips, it is possible to generate and check 

all possible error combinations. As the code size 

increases and the number of bit flips increases, it is no 

longer possible to exhaustively test all possible 

combinations. Therefore the simulations are done in two 

ways, by exhaustively checking all error combinations 

when it is feasible and by checking randomly generated 

combinations in the rest of the cases. The simulation 

results show the error detected in only one iteration 

and most of the errors are detected. 

The power and delay for serial and parallel 

MLDD is shown in table 1 

 

Table I 

 

IV.    CONCLUSION AND FUTURE SCOPE 
 

 The detection of errors during the first iterations 

of Serial One Step Majority Logic Decoding of EG-

LDPC codes and one step majority logic corrector when 

implemented serially provides compact implementation 

and when implemented in parallel minimize correction 

latency has been studied. The objective was to reduce the 

decoding time by stopping the decoding process when no 

errors are detected. The simulation results show that all 

tested combinations of errors affecting up to four bits are 

detected in the first three iterations of decoding. Error 

detection mechanism, Parallel MLDD has been presented 

based on the ML decoding used to the EG-LDPC. Single 

iteration is required for detection of any number of 

errors. Thus the delay time is reasonably low. These 
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results extend the ones recently presented for EG-LDPC 

codes, making the modified one step majority logic 

decoding more attractive for memory applications. Thus 

the error detection process using parallel technique is 

more efficient for the memory application. The further 

scope is to eliminate the silent error corruption. If the 

input has more than four bit error in the codeword, then 

the MLDD process is not exactly suitable to correct the 

codeword. In such case, silent fault corruption may 

occur. To reduce such fault, one more detection logic can 

be implemented after the completion of 15 iteration. Also 

detection of errors can be done through pipelining which 

reduces the delay time and power consumption. More 

generally, determining the required number of iterations 

to detect errors affecting a given number of bits seems to 

be an interesting problem. A general solution to that 

problem would enable a fine-grained tradeoff between 

decoding time and error detection capability. 
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