
 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 224 This work is licensed under Creative Commons Attribution 4.0 International License.

Simulation and Synthesis of Efficient Majority Logic Fault Detector

Using EG-LDPC Codes to Reduce Access Time for Memory

Applications

Suma.J
1
, Mahesh B Neelagar

2
, Shwetha N

3
 and Niranjan L

4

1
Assistant Professor, Department of ISE, Sapthagiri College of Engineering, Bangalore, INDIA

2
Assistant Professor, Department of ECE, VTU, Belagavi, Karnataka, INDIA

3
Assistant Professor, Department of ECE, Dr. AIT, Bangalore, INDIA

4
Assistant Professor, Department of ECE, CMRIT, Bangalore, INDIA

3
Corresponding Author: shwethaec48@gmail.com

ABSTRACT
This paper presents an error-detection method for

Euclidean Geometry low density parity check codes with

majority logic decoding methodology in VHDL language

and the output is verified with the help of Xilinx12.1.

Majority logic decodable codes are suitable for memory

applications due to their capability to correct a large

number of errors. However, they require a large decoding

time that impacts memory performance. The proposed

fault-detection method significantly reduces memory access

time when there is no error in the data read. The technique

uses the majority logic decoder itself to detect failures,

which makes the area overhead minimal and keeps the

extra power consumption low. Starting from the original

design of the ML decoder introduced, the proposed ML

Detector/Decoder (MLDD) has been implemented using the

Euclidean Geometry low density parity check codes. The

proposed improved majority logic detector/decoder to

perform data error correction in simple way using

additional error correction technique and also reducing the

delay time by detecting the errors in parallel manner.

Hence the decoding process uses less number of cycles

which reduces the delay.

Keywords-- Error Correction Codes, Euclidean Geometry

Low-Density Parity Check (EG-LDPC) Codes, Majority

Logic Decoding, Memory

I. INTRODUCTION

Memories are the most universal component

today but they are prone to errors like soft and transient

errors. Single Event Upsets (SEU) is the type of fault

which alters these memories by changing its states which

is caused by ions or electro-magnetic radiations. SEU

occurs in digital circuits when an energized particle, or

electron, causes a transistor to flip on or off from its

correct state. This happens in microcircuits, including

memory chips, communication devices, power circuits,

and microprocessors. Such a flip of one bit can cause a

computer or other electronic device to lockup or crash.

Circuit components, including configuration memory

cells, user memory, and registers, can also be affected.

Some type of embedded memory, such as ROM, SRAM,

DRAM, flash memory etc is seen in almost all system

chips.

 Soft errors that are predominantly caused by

external radiation are also known as SEUs. They result in

transient, inconsistent errors in data that are unrelated

to components or manufacturing failures. Intrinsic noise

and interference can also cause SEUs; however, design

engineers can accommodate these causes. SEUs manifest

themselves as either SBUs (single-bit upsets) or MBUs

(multiple-bit upsets). "SBU" refers to the flipping of one

bit due to the passage of a single energetic radiation

particle, where the physical separation from any other

flipped bit is at least two memory cells. MBU refers to

the flipping of several elements due to the passage

of one or more radiation particles. At the system level,

designers can mitigate the increase in SER for SRAMs

by using ECC (error-correction-code) detection and

correction so that every addressable word of data stored

in memory includes check information .The combination

of data and check information is often called a check

word. The consequence of a memory error is system-

dependent. In systems without ECC an error can lead

either to a crash or to corruption of data in large-scale

production sites memory errors are one of the most

common hardware causes of machine crashes. Memory

errors can cause security vulnerabilities. Cyclic block

codes have the property of being Majority Logic (ML)

decodable. Therefore cyclic block codes have been

identified as more suitable among the ECC codes that

meet the requirements of higher error correction

capability and low decoding complexity. Euclidean

Geometry Low-Density Parity Check (EG-LDPC) codes,

a subgroup of the Low-Density Parity Check (LDPC)

codes, which belongs to the family of the ML decodable

codes. The ML decoding are that it is very simple to

implement and thus it is very practical and has low

complexity. An error-correcting code (ECC) or forward

error correction (FEC) code is a system of adding

redundant data, or parity data, to a message, such that it

can be recovered by a receiver even when a number of

errors (up to the capability of the code being used) were

introduced, either during the process of transmission, or

on storage. Since the receiver does not have to ask the

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 225 This work is licensed under Creative Commons Attribution 4.0 International License.

sender for retransmission of the data, a back- channel is

not required in forward error correction, and it is

therefore suitable for simplex communication such as

broadcasting.

II. PROPOSED SYSTEM

 Majority Logic Detector/Decoding (MLDD)

technique is generally based on number of parity check

equations. These check equations are the results of XOR

gates. The inputs to the XOR gates are the fifteen bit data

which are stored in the shift registers. A generic

schematic of memory system is depicted in Fig .1.In this

Fig the input data is sent to the encoder and stored in the

memory. The decoding process is done in the MLDD.

Figure 1: Memory system schematic of MLDD

The codeword used in this technique is the EG-

LDPC code (Euclidean Geometry -Low Density Parity

Check).It is the One Step Majority Logic Decodable

code. This code uses the check sum algorithm. The check

sum algorithm is nothing but a numerical value is

associated with the code word to be transmitted. Then the

code word received at the receiver end has some

numerical value. There is a comparison on the associated

numerical values to detect the error. The existing method

is implemented using simple hardware. The decoding

time for this method is more. Also the power

consumption and area requirement are high. To detect

the errors serially the MLDD technique uses Serial One

Step Majority Logic Decoder. The serial one step

majority logic decoder is depicted in Fig.2.

It is the One Step Majority Logic Decodable

code. This code uses the check sum algorithm .The

check sum algorithm is nothing but a numerical value

is associated with the code word to be transmitted. Then

the code word received at the receiver end has some

numerical value. There is a comparison on the

associated numerical values to detect the error. The

existing method is implemented using simple hardware.

The decoding time for this method is more. Also the

power consumption and area requirement are high. To

detect the errors serially the MLDD technique uses

Serial One Step Majority Logic Decoder. The serial one

step majority logic decoder is depicted in Fig.2.

Figure 2: Serial one-step majority logic decoder for the (15,7) EG-LPDC code

In this decoder 15 bit data is first stored in the

cyclic shift register. Then the inputs are assigned to the

XOR gates. Since there is 15 bit data the XOR gates

required are four. The bit to be detected should be given

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 226 This work is licensed under Creative Commons Attribution 4.0 International License.

as one of the inputs for all the XOR gates. The outputs of

the XOR gates are the check sum equations. The check

sum equations consist of binary data. Then the Majority

circuit outputs the data which is in major number. If the

output of the majority circuit is „1‟ then the

corresponding bit has the error else the bit is error free.

The schematic of the MLDD is shown in Fig.3. It

consists of cyclic shift registers, XOR matrix, Majority

gate, control unit, tri state buffers and XOR gate. In this

schematic the control unit has the important

characteristic. It stores the result of three iterations. After

receiving the results of three iterations it sends “finish”

signal to the tri state buffer which indicates the data is

error free. The tri state buffer is in high state until it

receives the finish signal. After receiving the finish

signal it goes low and outputs the current data from

cyclic shift register. The output of the buffer is the

detected data.

Figure 3: Schematic of MLDD with Control unit

In the proposed technique the error detection

process is done in parallel and in pipelining manner. The

iteration required for detection is only one. Thus the

delay time is comparatively low. Also the power

consumption and the area requirement is low.

Considering the Fig.2. The entire 15 bit data is detected

simultaneously in single iteration. But the cyclic shift is

same as in serial error detection process. Error detection

process is also done in pipelining manner. In this process

area requirement is further reduced compared to parallel

processing.

III. ALGORITHMS

1. MLD Algorithm

Among the ECC codes that meet the

requirements of higher error correction capability and

low decoding complexity, cyclic block codes have been

identified as good candidates, due to their property of

being Majority Logic (ML) decodable. A subgroup of the

Low-Density Parity Check (LDPC) codes, which belongs

the main reason for using ML decoding is that it is very

simple to implement and thus it is very practical and

has low complexity. The drawback of ML decoding is

that, for a coded word of N-bits, it takes N cycles in

the decoding process, posing a big impact on system

performance to the family of the ML decodable codes.

One way of coping with this problem is to implement

parallel encoders and decoders. This solution would

enormously increase the complexity and, therefore, the

power consumption. As most of the memory reading

accesses will have no errors, the decoder in most of the

time is working for no reason. This has motivated the use

of a fault detector module that checks if the codeword

contains an error and then triggers the correction

mechanism accordingly. In this case, only the faulty code

words need correction, and therefore the average read

memory access is speeded up, at the expense of an

increase in hardware cost and power consumption. A

similar proposal has been presented in for the case of

flash memories. The simplest way to implement a fault

detector for an ECC is by calculating the syndrome, but

this generally implies adding another very complex

functional unit. This paper explores the idea of using the

ML decoder circuitry as a fault detector so that read

operations are accelerated with almost no additional

hardware cost.

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 227 This work is licensed under Creative Commons Attribution 4.0 International License.

2. MLDD Algorithm

The Difference Set Cyclic Codes (DSCC) used

in the majority logic decoding technique has the

drawback of detecting the errors for N clock cycles. This

drawback is overcome in Majority Logic

Detector/Decoding (MLDD) technique. The code used

in this algorithm is Euclidean Geometry- Low Density

Parity Check Codes (EG-LDPC). It is One-Step Majority

Logic Decodable technique. The algorithm embedded

here is Check Sum algorithm where a numerical value is

always associated with the data to be transmitted over the

memory. So that the data received at the receiver side is

verified by using the numerical value. This process is

feasible for three decoding cycles where most of the

errors are detected.

Flow Chart of MLDD Algorithm

Figure 4: Flow Diagram Of The MLDD Algorithm

3. Low Density Parity Check (LDPC)

A Low-Density Parity-Check (LDPC) code is a

linear error correcting code, a method of transmitting a

message over a noisy transmission channel, and is

constructed using a sparse bipartite graph. Low Density

Parity-Check code (LDPC) is an error correcting code

used in noisy communication channel to reduce the

probability of loss of information With LDPC, this

probability can be reduced to as small as desired, thus the

data transmission rate can be as close to Shannon's limit

as desired. LDPC codes are capacity-approaching codes,

which means that practical constructions exist that allow

the noise threshold to be set very close to the theoretical

maximum (the Shannon limit).for a symmetric memory-

less channel. The noise threshold defines an upper bound

for the channel noise, up to which the probability of lost

desired LDPC codes are finding increasing use in

applications requiring reliable and highly efficient

information transfer over bandwidth or return channel

constrained links in the presence of data corrupting noise

An LDPC code beat six turbo codes to become the

error correcting code in the new DVB-S2 standard for

the satellite transmission of digital television. LDPC beat

convolution turbo codes as the FEC scheme because of

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 228 This work is licensed under Creative Commons Attribution 4.0 International License.

its lower decoding complexity. The name comes from

the characteristic of their parity-check matrix which

contains only a few 1‟s in comparison to the amount of

0‟s. Their main advantage is that they provide a

performance which is very close to the capacity for a lot

of different channels and linear time complex algorithms

for decoding.

4. Euclidean Geometry Low-Density Parity Check (EG-

LDPC) Codes

Euclidean Geometry Low-Density Parity Check

(EG-LDPC) codes, a subgroup of the Low-Density Parity

Check (LDPC) codes, which belongs to the family of the

ML decodable codes, is focused here. Euclidean

Geometry codes are also called EG-LDPC codes based

on the fact that they are Low-Density Parity Check

(LDPC) codes. LDPC codes have a limited number of

1‟s in each row and column of the matrix; this limit

guarantees limited complexity in their associated

detectors and correctors making them fast and light

weight. Let EG be a Euclidean Geometry with points and

J lines. EG is a finite geometry that is shown to have the

following fundamental structural properties are

 Every line consists of points

 Any two points are connected by exactly one line

 Every point is intersected by lines

 Two lines intersect in exactly one point or

they are parallel i.e., they do not intersect

IV. SIMULATION RESULTS

 Simulation results are shown for three

blocks such as for encoder, memory, majority logic

decoder/detector with control and for final serial majority

logic decoder.

Simulation Result for Encoder

Figure 5: Simulation Result of Encoder

Figure 5 shows the simulation result of an

Encoder. The data input to given to the memory is

encoded first through this encoder block. The input to the

encoder is the 7 bit information and output is the 15 bit

information. The signal output is form s1 to s8.

Simulation Result of Memory

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 229 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 6: Simulation Result of Memory

Figure 6 shows the simulation result of the

memory. The data in and data out of the memory is the

15 bit information taken from the encoder. The

temporary RAM is used as memory element. The clock

event is used to read from the memory and write data to

the memory. The memory address of the particular data

is also specified.

Simulation Result of One-Step Majority Logic Decoder

Figure 7: Simulation Result of One-Step MLD.

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 230 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 7 shows the output of the Serial Majority

logic decoder. In this decoder the data read from the

memory is given as serial input to the decoder. The data

is verified whether it is with error or without error by

serial cyclic shifting. This method is called One Step

Majority Logic Decoding.

Simulation Result of Parallel MLDD

Figure 8: Simulation Result of Parallel MLDD

Figure 8. shows the output of the parallel

Majority logic decoder. In this decoder the data read

from the memory is given as parallel input to the

decoder. All codeword bits are decoded at the same

time. The data is verified whether it is with error or

without error in single iteration.

Power Analyzer

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 231 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 9: Power consumed by serial MLD

Figure 9 shows the total power consumed by the

serial majority logic decoding technique.
Synthesis of Area

Figure 10: Area consumption for the serial MLD

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 232 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 10 shows the area requirement of the

serial majority logic decoding technique
Timing Constraint

Figure 11: Delay Constraint for the Serial MLD

Figure 8.8 shows the delay time of the serial

majority logic decoding technique for the error correction.

The proposed method has been applied to one step

majority logic decoding EG-LDPC codes. The results are

presented with the help of VHDL simulation. For codes

with minimum words and affected by a minimum

number of bit flips, it is possible to generate and check

all possible error combinations. As the code size

increases and the number of bit flips increases, it is no

longer possible to exhaustively test all possible

combinations. Therefore the simulations are done in two

ways, by exhaustively checking all error combinations

when it is feasible and by checking randomly generated

combinations in the rest of the cases. The simulation

results show the error detected in only one iteration

and most of the errors are detected.

The power and delay for serial and parallel

MLDD is shown in table 1

Table I

IV. CONCLUSION AND FUTURE SCOPE

 The detection of errors during the first iterations

of Serial One Step Majority Logic Decoding of EG-

LDPC codes and one step majority logic corrector when

implemented serially provides compact implementation

and when implemented in parallel minimize correction

latency has been studied. The objective was to reduce the

decoding time by stopping the decoding process when no

errors are detected. The simulation results show that all

tested combinations of errors affecting up to four bits are

detected in the first three iterations of decoding. Error

detection mechanism, Parallel MLDD has been presented

based on the ML decoding used to the EG-LDPC. Single

iteration is required for detection of any number of

errors. Thus the delay time is reasonably low. These

 International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-12, Issue-6, (December 2022)

www.ijemr.net https://doi.org/10.31033/ijemr.12.6.31

 233 This work is licensed under Creative Commons Attribution 4.0 International License.

results extend the ones recently presented for EG-LDPC

codes, making the modified one step majority logic

decoding more attractive for memory applications. Thus

the error detection process using parallel technique is

more efficient for the memory application. The further

scope is to eliminate the silent error corruption. If the

input has more than four bit error in the codeword, then

the MLDD process is not exactly suitable to correct the

codeword. In such case, silent fault corruption may

occur. To reduce such fault, one more detection logic can

be implemented after the completion of 15 iteration. Also

detection of errors can be done through pipelining which

reduces the delay time and power consumption. More

generally, determining the required number of iterations

to detect errors affecting a given number of bits seems to

be an interesting problem. A general solution to that

problem would enable a fine-grained tradeoff between

decoding time and error detection capability.

REFERENCES

[1] S. Liu, P. Reviriego & J. Maestro. (2012). Efficient

majority logic fault detection with difference-set

codes for memory applications. IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., 20(1), pp. 148–

156.

[2] S. Ghosh & P. D. Lincoln. (2007). Low-density

parity check codes for error correction in nanoscale

memory. SRI Computer Science Lab., Menlo Park,

CA, Tech. Rep. CSL-0703.

[3] R. C. Baumann. (2005. Radiation-induced soft

errors in advanced semiconductor technologies.

IEEE Trans. Device Mater. Reliab., 5(3), pp. 301–

316.

[4] H. Naeimi & A. DeHon. (2007). Fault secure

encoder and decoder for memory applications. In:

Proc. IEEE Int. Symp. Defect Fault Toler. VLSI

Syst., pp. 409–417.

[5] B. Vasic & S. K. Chilappagari. (2007). An

information theoretical framework for analysis and

design of nanoscale fault-tolerant memories based

on low density parity-check codes. IEEE Trans.

Circuits Syst. I, Reg. Papers, 54(11), pp. 2438–

2446.

[6] S. Lin & D. J. Costello. (2004). Error control

coding. (2
nd

 ed.). Englewood Cliffs, NJ: Prentice-

Hall.

[7] H. Tang, J. Xu, S. Lin & K. A. S. Abdel- Ghaffar.

(2005). Codes on finite geometries. IEEE Trans.

Inf. Theory, 51(2), pp. 572–596.

[8] M. A. Bajura, Y. Boulghassoul, R. Naseer, S. Das

Gupta, A. F. Witulski, J. Sondeen, S. D.

Stansberry, J. Draper, L. W. Massengill & J. N.

Damoulakis. (200). Models and algorithmic

limits for an ECC-based approach to hardening

sub-100-nm SRAMs, IEEE Trans. Nucl. Sci.,

54(4), pp. 935–945.

[9] R. Naseer & J. Draper. (2005). DEC ECC design to

improve memory reliability in sub-100 nm

technologies. Proc. IEEE ICECS, pp. 586–589.

[10] R. C. Baumann. (2005). Radiation-induced soft

errors in advanced semiconductor technologies.

IEEE Trans. Device Mater. Reliabil, 5(3), pp. 301–

316.

[11] M. A. Bajura et al. (2007

Aug). Models and algorithmic limits for an ECC-

based approach to hardening sub-100-nm SRAMs.

IEEE Trans. Nucl. Sci., 54(4), pp. 935–945.

[12] R. Naseer & J. Draper. (2008). DEC ECC design to

improve memory reli-ability in sub-100 nm

technologies. In: Proc. IEEE ICECS, pp. 586–589.

[13] C. W. Slayman. (2005). Cache and memory error

detection, correction, and reduction techniques for

terrestrial servers and workstations. IEEE Trans.

Device Mater. Reliabil, 5(3), pp. 397–404.

[14] B. Vasic & S. K. Chilappagari. (2007). An

information theoretical frame-work for analysis and

design of nanoscale fault-tolerant memories based

on low-density parity-check codes. IEEE Trans.

Circuits Syst. I, Reg. Papers, 54(11), pp. 2438–

2446.

[15] H. Naeimi & A. DeHon. (2009). Fault secure

encoder and decoder for nano memory applications.

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

17(4), pp. 473–486.

[16] Y. Kato & T. Morita. (2003). Error correction

circuit using difference-set cyclic code. In: Proc.

ASP-DAC, pp. 585–586.

[17] P. Ankolekar, S. Rosner, R. Isaac &d J. Bredow.

Multi-bit error correction methods for latency

contrained flash memory systems. IEEE Trans.

[18] Shwetha, N., Niranjan, L., Chidanandan, V. &

Sangeetha, N. (2021), Smart driving assistance

using Arduino and proteus design tool. Expert

Clouds and Applications, 647–663.

https://doi.org/10.1007/978-981-16- 2126-0 51.

[19] Shwetha, N., Niranjan, L., Chidanandan, V. &

Sangeetha, N. (2021). Advance system for driving

assistance using Arduino and proteus design tool.

Third International Conference on Intelligent

Communication Technologies and Virtual Mobile

Networks (ICICV). Available at:

https://doi.org/10.1109/icicv50876.2021.9388620.

