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ABSTRACT 
Interest and ideas on semantic segmentation move on 

the increasing trend in the area of autonomous driving. This 

meets the rise in the deep learning approach. The first step 

in the training of a segmentation model is the dataset 

preparation. For this, RGB images and its corresponding 

segmentation images are required such that, the size of 

these remain the same. Each class in the image is assigned 

with a unique ID. The pixel value in the segmentation image 

denotes the class ID of the corresponding pixel. Moreover, 

as jpg format of the image is lossy, bmp or png formats are 

usually preferred. The success of the model is measured 

using metrics, which helps in grading the model. This paper 

deals with the examination of the widely used datasets in the 

field of semantic segmentation. The mIoU metric of the 

datasets on various models have been comparative studied 

at the end of the analysis. 
 

Keywords-- 2D Dataset, 2.5D Dataset, 3D Dataset, 

Metrics, Semantic Segmentation 

 

 

I. INTRODUCTION 
 

Scene understanding is the process of 

perceiving, analysing and elaborating a scene 

interpretation. Understanding a scene aids in extracting 

semantic relationships as well as patterns. In fact, there 

is a huge increase in the number of applications which 

gain from the knowledge inferred from these images.  

Semantic segmentation paves a way to this scene 

understanding. Autonomous driving is one such 

application [1-3]. Growth in deep learning techniques 

has paved a way in resolving such computer vision based 

semantic segmentation problems, using convolutional 

neural networks [4-8], as they surpass other approaches 

in terms of accuracy and also in efficiency. This paper 

deals with a wide survey of datasets that are useful in 

semantic segmentation. It showcases the challenges and 

bench marks of the existing datasets along with their 

contribution.  

 

II. BACKGROUND CONCEPT 
 

Object recognition is the means to identify or 

understand the objects that are present in images and 

videos, similar to the way the humans do. Image 

classification is a means of outputting the classification 

label, with some probability for an input image. In case 

of object localization, the algorithm determines the 

object, labels the class. A bounding box is generated 

around the identified object. The bounding box location 

including the position, height and width will be the 

output corresponding to an input image. Object detection 

is a combination of image classification and object 

detection. For each input image, there might be multiple 

bounding boxes and class labels. The main issue with 

object detection is the shape of the bounding box. A 

rectangular bounding box may not be appropriate in the 

determination of those objects that have a curvy shape. 

Also, object detection cannot determine accurate 

measures of object area or perimeter of object. 

Image segmentation, a further extension of 

object classification and detection, is the process wherein 

one image is being divided into multiple image 

segments. Here, each pixel in the image is related with 

an object type. This technique is more granular as it 

helps in determination of the shape of each and every 

object that is existing in the image. Image segmentation 

can be classified into two – semantic segmentation and 

instance segmentation. In semantic segmentation, all 

objects of the same type are indicated using one class 

label whereas in instance segmentation, each object of 

the same type gets its own separate label.  

 

III. DATASET 
 

Here, existing datasets are discussed with their 

evaluation based on quality, its popularity based on 

citation reports, usage as a benchmarking tool, its degree 

of significance and the level of impact in the 

corresponding field. Datasets are initially subdivided 

based on their data representation as 2D, 3D. They are 

also of any kind of representation say, gray scale or 

RGB. 

3.1. 2D dataset 

3.1.1 PASCAL-Visual Object Classes (VOC) –  

This dataset [9-10] consists of annotated 

images, catering for 5 different tasks such as detection, 

classification, person-layout, action-recognition and 

segmentation. For segmentation purpose, this dataset 

contains 21 classes classified as vehicles, bicycle, car, 

bus, motorbike, aeroplane, boat, train, household, bottle, 

TV or monitor, chair, potted plant, dining table, sofa, 

person, animals, cow, cat, dog, sheep, horse and bird. 
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Any pixel not belonging to any of the mentioned classes 

is considered as background. The dataset is of 2sets – 

training set with 1464 images and validation set with 

1449 images. For the actual challenge purpose, private 

dataset is available. 

3.1.2 PASCAL-Context –  

An extended version of the PASCAL VOC2010 

is this dataset [11-12]. Here, the training images are 

pixel wise labels. There are more than 400 classes 

available, which includes almost 20 original classes. 

These classes can be categorized into 3 classes – objects, 

stuff, hybrids, along with background from PASCAL 

VOC. The down line with this dataset is that, many of 

them are too sparse. 

3.1.3 PASCAL Part –  

This dataset [13-14] is also an extension of 

PASCAL VOC for providing per pixel segmentation 

mask for each part of the object. It consists of labels for 

all PASCAL VOC training as well as validation images. 

Also, labels are available for testing images, which are 

9637 in total. 

3.1.4 Semantic Boundaries Dataset-  

This dataset [15-16] is again an extension of the 

PASCAL VOC. It provides pixel labelling ground truth 

for the images that were not formally pixel labelled in 

the original VOC dataset. It consists of annotations for 

11355 images. Category and instance level 

segmentations are provided by these annotations, along 

with boundary information. Moreover, SBD provides 

8498 training images and 2857 validation images. 

Because of availability of large dataset for training 

purpose, this Semantic Boundaries Dataset is mostly 

used in place of the PASCAL VOC dataset.  

3.1.5 Microsoft Common Objects in Context –  

This dataset [17-18] is a segmentation dataset. 

This includes more than 80 classes catering for 82783 

training images, 40504 validation images and 80000 test 

images. The test set is split into 4 sets each of 20000 

images– test-dev for additional validation, test-standard 

for comparing state of art, test-challenge for evaluation 

challenge and test-reserve for protection from overfit 

issues.  

3.1.6 SYNTHIA –  

This dataset [19-20] also known as SYNTHetic 

Collection of Imagery and Annotations is semantically 

segmented providing pixel level annotation for 11 

classes namely, building, pedestrian, sky, road, sidewalk, 

pole, fence, vegetation, car, sign, and cyclist. It consists 

of 13407 training set images, catering for different 

scenes – towns, highways, cities as well as seasons and 

weather conditions. 

3.1.7 Cityscapes –  

This dataset [21-22] is a large scale data base. 

Its main focus is on urban street scenes captured from 50 

cities under good weather conditions. It provides pixel 

labels for 30 classes which are grouped into 8 categories 

– constructions, flat-surfaces, objects, humans, nature, 

vehicles, void and sky. This dataset consists of 5000, 

20000 fine and coarse annotated frames respectively.  

3.1.8 CamVid –  

This dataset [23, 24, 26] is a dataset for 

understanding the driving scene understanding. These 

are manually annotated with 32 classes mainly, 

pedestrian,   tree, cart, bicyclist, fence, driving and non-

driving lane markings, sidewalk, parking, vehicle, 

animal, road, traffic light, sky, tunnel and other moving 

object. The partition by Sturgess et al. [25] divides the 

dataset into 367 train images, 100 val images and 233 

test images. 

3.1.9 KITTI –  

This dataset [27] is for use in mobile robots as 

well as autonomous vehicle driving. It contains hours of 

recorded traffic scenes. Here, semantic segmented 

ground truth is not available for the original. But later, 

manual annotation has been carried out on these, by the. 

For 323 images, Álvarez et al. [28-29] generated ground 

truth from the road detection challenge with 3 classes: 

road, sky and vertical. Ros et al. [30] labelled 170 

training and 46 testing images with  a total of 11 classes 

namely, vehicle,  road, sign, pedestrian, pole, fence, 

sidewalk, etc. Zhang et al. [31] annotated a total of 252 

images, 140 for training and 112 for testing. These were 

annotated with 10 object categories. 

3.1.10 Youtube-Objects –  

It is a database [32] containing videos which 

were collected from you tube. They contains image from 

10 PASCAL VOC classes. The original database were 

not pixel wise annotated. But a subset of 126 sequences 

were manually annotated by Jain et al [33]. Then a 

subset of frames were extracted so that, semantic labels 

will be generated. These totalled to 10167 annotated 

frames. 

3.1.11 Adobe’s Portrait Segmentation –  

This dataset [34, 35] is obtained from Flickr. 

The images were those that were captured using front 

facing mobile cameras. The dataset consists of 1800 

images - 1500 for training and 300 for testing, being 

binary annotated – person and background. Using face 

detector, the images were cropped to 600x800 and then 

were annotated manually using the photo-shop quick-

selection.   

3.1.12 Materials in Context –  

This MINC dataset [36] is for classification of 

patch as well as entire scene segmentation. Here, the 

dataset annotates for 23 categories namely, food, 

material type, hair, painted, skin, sky, water, wood etc. It 

contains 7061/2500/5000 for training, validation and test 

images. These dataset are obtained from OpenSurfaces 

dataset [37], which was then augmented. Hence, the 

resolution for this dataset varies. 

3.1.13 Densely-Annotated VIdeo Segmentation –  

This DAVIS dataset [38-40] is for video object 

segmentation. It contains 4219 training frames and 2023 

validation frames. Pixelwise annotations are provided 

frame wise, for 4 categories namely, animal, human, 

object and vehicle. This dataset is such that it does not 

have more different objects with significant motion. 
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3.1.14 Stanford background –  

This dataset [41-42] contains outdoor scenery 

images from previous datasets like Geometric Context, 

PASCAL VOC etc. It consists of 715 images and there 

should be atleast one foreground object. The dataset is 

pixel annotated and it is used for the purpose of semantic 

supported scene understanding. 

3.1.15 Siftflow –  

This dataset [42, 44] consists of 2688 images, of 

256x256 pixel. There are 33 semantic classes and they 

belong to one of these. The images are annotated as a 

subset from the database LabelMe[43]. The images are 

founded on 8 various outdoor settings, which includes 

beaches, buildings, fields and mountains. 

3.1.16 ADE20K /MIT Scene Parsing –  

This sceneParse150 dataset has its benchmark 

from the dataset ADE20K [45]. It provides training and 

evaluation for scene understanding and contains 22k 

images with 20k and 2k for training and validation. This 

dataset has almost 150 semantic categories. 

3.1.17 Berkeley Segmentation Dataset –  

This BSD dataset [46] is hand labelled from 1000 

Corel dataset images consisting of 30 human subjects. 

Of this image segmentation, half were obtained from that 

of color image, while other half from that of grayscale 

image. 

3.2. 2.5D dataset 

These 2.5D datasets are RGB dataset along with 

the depth information. This is possible because of 

affordable range scanners.  

3.2.1NYU-D-v2 –  

This dataset [47, 48] captured by Microsoft 

Kinect device, contains 1449 dense labelled pair of depth 

and RGB images from more than around 450 scenes, 

which were taken from 3 different cities. These were 

later fused into 40 object classes for indoor, by Gupta et 

al. [49], 795 and 654 images for training and testing 

respectively. As this dataset consists of indoor objects, it 

is more useful towards robotic tasks at home. But 

compared to other datasets, this dataset is small.  

3.2.2 Object Segmentation Database –  

This OSD dataset is designed to segment 

unknown objects even under the case of partial 

occlusion. The dataset includes 111 entries, providing 

both depth as well as color images. Here, as the dataset 

is not able to differentiate category of different objects, 

the classes are derived to a give a binary set. This can be 

of objects and no-objects. 

3.2.3 SUN3D –  

This dataset [50-51] consists of large scale 

RGBD video dataset, containing 415 sequences shot in 

41 different buildings, for about 254 different spaces. 

Each frame details the semantic segmentation of the 

object as well as the pose of the camera. 

3.2.4 ScanNet –  

This dataset [55] contains 2.5 million views, 

which are annotated with 3D camera poses. This dataset 

helped in achieving state of art performances on 3D 

object-classification and hence, scene-understanding. For 

data collection, a scalable RBGD capture system is 

designed, which includes reconstruction of surface, 

automated. 

3.2.5 SUN-RGBD –  

This dataset [52-53] captured with 4 RGBD 

sensors, consists of 10000 RGBD images at the same 

scale as that of the original PASCAL VOC. This dataset 

is annotated densely and it includes 2D polygon and 3D 

bounding box, – 146617 and 58657 respectively, suitable 

for tasks involving scene understanding. 

3.2.6 UW-RGBD –  

This RGBD Object dataset [54, 58] consists of 

300 household objects, which were captured using 

Kinect style 3D camera. The dataset organised to 51 

categories including 8 annotated video sequences. Here, 

the images captured are 640x480 pixel RGB and depth at 

30Hz. 

3.3. 3D Dataset 

Volumetric representation such as point cloud 

and mesh provide the 3dimensional images. These are 

useful in robotic applications, medical image analysis or 

3D scene understanding and in other construction 

oriented applications. 

3.3.1 A Benchmark for 3D-Mesh Segmentation –  

This dataset [59, 60] is designed by 380 meshes. 

These meshes are classified into 19 categories namely, 

airplane, animal, chair, cup, glass, hand, human, etc. 

Here, each mesh is manually segmented into functional 

parts. 

3.3.2 Large-Scale Point-Cloud Classification 

Benchmark –  

This dataset [61, 62] comprises 3D point cloud 

of diverse natural urban scenes such as church, castle, 

village, street etc. These are manually annotated and 

consists of statistically captured pointclouds with finer 

information and density. It consists of 15 large scale 

point-cloud for both training and testing. Each total to 

more than one billion labelled points. 

3.3.3 ShapeNet Part –  

This dataset [63, 64] is a subset of ShapeNet 

[65]. It concentrates on the Object segmentation of fine 

grains. It includes 31,693 meshes which are sampled 

from 16 categories and each shape class is labelled from 

2 to 5 parts.  

3.3.4 Stanford 2D-3D-S –  

This dataset [66, 67] is captured in 6 indoor 

areas from 3 different educational and office buildings. 

With semantic annotation, it provides a wide variety 

from 2D to 2.5D to 3D. It is an extension of Stanford 3D 

Semantic Parsing work [68] and gives in a total of 271 

rooms and 700 million points, which are annotated with 

labels from 13 categories - beam, board, bookcase, 

ceiling, chair, clutter, column, door, floor, sofa, table, 

wall and window 

3.3.5 Sydney Urban Objects Dataset –  

This dataset [69, 70] consists of various urban 

type road objects. They are scanned using a Velodyne 

HDK-64E LIDAR. It includes around 631 scan of 
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objects across a class of pedestrian, sign, tree and 

vehicles. 

 

IV. SEGMENTATION MODEL 

METRICS 
 

Metrics are used to evaluate the performance of 

the segmentation models to have a model that could 

contribute significantly to the field and also to enable 

fair comparison with the other existing methods. Also, 

the metric plays an important role in the validation of the 

model.  

Pixel Accuracy – PA - It is the simplest metric 

which computes the ratio between the total number of 

pixels which are classified properly to the total number 

of pixels. If k is the number of foreground classes and 

k+1 implies an addition of background, then pixel 

accuracy is defined as 

    
∑    
 
   

∑ ∑    
 
   

 
   

 

Mean Pixel Accuracy – MPA - This is an 

improved version of Pixel Accuracy wherein, the ratio of 

correctly classified pixels is calculated on the class basis. 

This is then averaged over the total number of classes 

found 

     
 

   
∑

   

∑    
 
   

 

   

 

TP, FP, FN - The IoU of a prediction target 

mask pair, if it exceeds a predefined threshold, is 

observed to have true positive. If the prediction mask has 

no associated ground truth, then a false positive is 

indicated. If the ground truth has no associated 

prediction mask, then a false negative is indicated. 

Intersection over Union – IoU - Also known as 

Jaccard Index, this is defined as the ratio to the area of 

intersection between the prediction map and ground 

truth, to the area of union between the prediction map 

and ground truth. Suppose A is the ground truth and B is 

the predicted segmentation truth, then 

     (   )   
     

     
 

Mean Intersection over Union – MIoU is a 

standard metric for segmentation that computes the IoU 

on class basis and then averages it. The MIoU can also 

be formulated as the ratio of number of true positive over 

the sum of true positive, false negative and false 

positive.  

      
 

   
∑

   

∑      ∑        
 
   

 
   

 

   

 

Precision - It indicates the purity of positive 

predictions with reference to the ground truth. It 

determines as to how many objects have matching 

ground truth annotations. 

           
  

     
 

Recall - It indicates the completeness of the 

positive prediction to that of the ground truth. It 

determines of all of ground truth annotations, how many 

are positive predictions. 

        
  

     
 

F1 score - This is the harmonic mean between 

precision and recall. It brings in a balance between 

precision and recall. A good F1 score implies less false 

positives and less false negatives 

          
                  

               
 

Dice coefficient - This is defined as two times 

the overlap area between the prediction and ground truth 

map, divided by the sum of pixels in both prediction and 

ground truth map. Suppose A is the ground truth and B is 

the predicted segmentation truth, then 

       
     

       
 

When applied to a Boolean data, Dice score is 

similar to that of the F1 score  
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Table 1: mIoU (%) metric details  of various datasets on different models, collected from various papers as mentioned in 

the references 

Model ADE20k 

PASCAL 

VOC Cityscape 

NYUD-

v2 

MS 

COCO  

AC-Net [106] 45.9 

 

82.3 

 

40.1 

APC-Net [82] 

 

87.1 

   BiSeNet [103] 

  

78.9 

  BoxSup [96] 

 

75.1 

   CascadeNet [109] 34.90 

    CCN [81] 

    

35.7 

CCNet [91] 

  

81.4 

  CRF-RNN [71] 

 

72 

   DANet [89] 

  

81.5 

 

37.9 

DeepLab-CRF [86] 

 

79.7 

   DeeplabV2 [85] 

  

70.4 

  DeeplabV3 [70] 

 

85.7 81.3 

  DeeplabV3+ [88] 

 

87.8 

   DenseASPP [87] 

  

80.6 

  DFN [93] 

 

86.2 79.3 

  DilatedNet [83] 32.31 

    Dilation10 [84] 

  

67.1 

  DIS [100] 

 

56.8 

   DM-Net [80] 45.5 87.06 

   DPN [74] 

 

77 66.8 

  DSSPN [107] 43.68 

   

37.3 

DUC-HDC [77] 

  

77.6 

  EfficientNet+NAS+FPN 

[113] 

 

90.5 

   EMANet  [90] 

 

57.7 

  

39.9 

EncNet [94] 44.64 S5.9 

   Exfuse [99] 

 

86.2 

   FcaveaNet [101] 

  

74.1 

  FCN [72] 29.39 62.2 65.3 34 

 GCN [97] 

 

52.2 76.9 

  GS-CNN [105] 

  

82.8 

  Hierarchical MSA [112] 

  

85.1 

  HPxNetV2+OCR (w/ASPP) 

[75] 

  

83.7 

  Ladder DenseNet [102] 

  

73.7 

  MSCI [114] 

 

55 

   OCR [75] 

  

82.4 

 

39.1 

Piecewise [73] 

 

78 

   PSANet [92] 43.7 

 

80.1 

  PSPNet [79] 43.29 55.4 85.4 

  RefineNet [95] 40.7 84.2 73.6 

 

33.6 

SAC [110] 44.3 

    SDN [76] 

 

86.6 

   SGR [108] 

    

39.1 

UperNet [111] 42.6 

    Wide ResNet [98]   84.9 78.4     
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V. SUMMARY AND CONCLUSION 
 

Datasets pertaining to semantic segmentation 

were described, indicating their need and characteristics. 

This could enable the decision making to choose the 

required dataset for a particular application. This study 

has led to the notion that there is no standard dataset, 

wherein all methods can relay their report. Many 

methods have infact, reported their results on non-

standard datasets. This makes a comparative study 

difficult. Of the various metrics available, accuracy is of 

more importance for a real time application. Also, there 

is lack of information on other metrics like the execution 

time, memory foot print. 
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