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ABSTRACT 
Unmanned aerial vehicle decision-making issues are 

increasingly being addressed using reinforcement learning 

(RL) (UAVs). The current advances in RL-based algorithms 

for UAV applications, encompassing both single-agent and 

swarm scenarios, are thoroughly reviewed in this work. First, 

the basic concepts of RL and its variants are introduced, 

followed by an overview of the state-of-the�art RL 

algorithms that have been applied to UAV navigation, path 

planning, and obstacle avoidance. The study then examines 

real-time learning concerns, model selection, and exploration-

exploitation trade-offs, as well as challenges and potential for 

employing RL in UAV systems. In order to further the use of 

RL in UAVs, future research initiatives are also suggested. 

They include creating hybrid methods that integrate RL with 

other methodologies and incorporating human feedback and 

domain expertise into the learning process. Overall, this work 

demonstrates the potential of this approach to improve the 

autonomy, adaptability, and resilience of UAV systems and 

serves as a significant resource for researchers and those 

interested in applying RL to UAVs. 

 

Keywords— UAV, Autonomy, Reinforcement, Aircraft 
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I.  INTRODUCTION 
 

Unmanned Aerial Vehicles (UAVs), also known 

as drones, are aircraft that operate without a human pilot 

on board. They are controlled remotely or can fly 

autonomously using onboard computers and sensors. 

UAVs come in various shapes and sizes, from small 

consumer drones to large military drones. The field of 

unmanned aerial vehicles (UAVs) has seen a lot of 

progress and innovation in recent years, including the past 

three. There have been significant advances in areas such 

as flight performance, sensor technology, safety and 

reliability, autonomous flight, and specific applications. 

Unmanned aerial vehicles (UAV), also referred to as 

”drones,” are small aircraft that are capable of flight using 

air currents and other driving forces, autonomous flight, 

the ability to carry payloads, and remote control operation. 

In many nations around the world, the ageing population 

and lengthening lifespans constitute a significant challenge 

for healthcare services and systems.  
The two primary options—personal care at home 

or in a nursing home—require a lot of labour and cost a lot 

of money for the elderly, their families, and the healthcare 

system. Current developments in computing, networking, 

and sensor technologies have made it possible to treat 

these problems effectively and affordably while extending 

the independent lives of the elderly. The use of 

photography from unmanned aerial vehicles (UAVs) is 

expanding rapidly right now. In fact, data acquired from a 

bird’s-eye perspective is especially pertinent for a wide 

range of applications, from agricultural to monitoring 

services. Tele surgical robots has the potential to enhance 

medical operations when unmanned extraction vehicles 

become a reality in the war arena. This project showcased 

an experimental surgical robot that used a network 

architecture made out of unmanned aerial vehicles 

(UAVs). During the COVID-19 crisis, when there were 

broad, widespread epidemics of contagious diseases, 

drones and UAVs were crucial in giving humanitarian 

supplies. This infectious disease has an impact on 

everyone in the world, and every instrument at our 

disposal has been employed to combat it. This technique 

has the potential to provide medical supplies in remote 

locations or during calamities. Delivery to islands without 

access to land transportation is challenging, and after a 

disaster, there is a higher danger of adverse conditions 

(such as delivery over terrain where bridges have failed or 

across rivers that have flooded). Drones, also referred to as 

unmanned aerial vehicles, are one such technology. They 

have been crucial for many military applications for a long 

time, but more recently, they have also asserted themselves 

in our daily lives. Drones have quickly emerged as the next 

disruptive force in our culture, disrupting everything from 

weather monitoring and gaming to photography and 

transportation.  
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Figure 1: Basic element of an uav 

   
These Unmanned Aerial Vehicles (UAVs) have 

become increasingly popular in various applications such 

as military, civilian, and commercial sectors due to their 

unique capabilities and advantages. However, the effective 

operation of UAVs in complex and dynamic environments 

is still a challenging task. One of the approaches to tackle 

this challenge is the application of Reinforcement Learning 

(RL) techniques in UAVs. This paper aims at providing a 

review of the most relevant, cutting-edge research on 

applying RL algorithms to UAVs. It also attempts to 

address the potential advantages and difficulties related to 

the application of RL in UAVs. Additionally, this study 

analyses current advancements and trends in RL-based 

UAV applications and identifies potential future research 

topics. 

 

II.    UNMANNED AERIAL VEHICLE-

FUNDAMENTAL AND CLASSIFICATION  
 

A. Fundamental of an UAV 

Unmanned Aerial Vehicles (UAVs) are aircraft 

that are operated without a pilot onboard. They are also 

known as drones, and they come in a wide range of shapes 

and sizes, from small quadcopters to large fixed-wing 

aircraft. Here are some of the fundamental components and 

features of a typical UAV is shown in figure [1]  

• Power Source: UAVs require a power source to 

operate, usually in the form of a battery or fuel cell. 

The power source is typically located on the body of 

the UAV and provides energy to the motor(s) that 

drive the propellers or rotors 

• Flight Control System: UAVs are equipped with a 

flight control system that includes sensors, actuators, 

and a flight controller. The flight control system is 

responsible for stabilizing the UAV in flight and 

controlling its movement in three dimensions. The 

flight controller processes data from the sensors and 

provides commands to the actuators to adjust the 

UAV’s attitude and speed. 

• Communication System: UAVs need to communicate 

with a ground station or other devices to receive 

commands, transmit data, and receive updates on 

their status. This is typically done using wireless 

communication technologies, such as radio or satellite 

links. 

• Payload: UAVs can carry various types of payload, 

such as cameras, sensors, or other equipment, 

depending on their intended application. The payload 

is typically mounted on the body or undercarriage of 

the UAV and is controlled by the onboard flight 

controller. 

• Navigation System: UAVs need a navigation system 

to determine their position, orientation, and velocity. 

This can be done using Global Navigation Satellite 

Systems (GNSS) such as GPS, as well as inertial 

sensors and other techniques. 

These are some of the fundamental components of a 

UAV. However, there are many other factors that can 

influence the design and capabilities of a UAV, such as its 

size, range, endurance, and payload.  
B. UAVs Taxonomy 

Unmanned Aerial Vehicles (UAVs) can be 

categorized into various types based on their size, shape, 

weight, capabilities, and applications. The UAV taxonomy 

can be classified into several categories, including:  

1. Fixed-wing UAVs: These UAVs are designed 

with a fixed-wing structure, similar to a traditional aircraft. 

They have a longer range and can fly for a more extended 

period without requiring frequent battery recharges.  

2. Rotary-wing UAVs: Also known as multirotor 

UAVs, these drones have multiple rotors and are designed 

for vertical takeoff and landing (VTOL). They can hover 

in place and are useful for applications that require precise 

positioning.  

3. Hybrid UAVs: These drones combine the 

features of fixed-wing and rotary-wing UAVs, making 

them suitable for applications that require both long-range 

flight and vertical takeoff and landing capabilities. 

 4. Nano UAVs: These are small UAVs typically 

weighing less than 100 grams and have a limited range and 

flight time. They are suitable for indoor applications and 

close-range surveillance.  

5. Small UAVs: These UAVs typically weigh 

between 0.5 kg to 25 kg and are suitable for small-scale 

mapping, surveillance, and inspection applications. 

 6. Medium UAVs: These drones weigh between 

25 kg to 150 kg and are suitable for applications such as 

aerial mapping, agriculture, and infrastructure inspection. 

7. Large UAVs: These are heavy drones typically 

weighing more than 150 kg and have a longer range and 

flight time. They are suitable for applications such as cargo 

delivery, military surveillance, and search and rescue 

operations.  
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The taxonomy of UAVs is constantly evolving as 

technology advances and new applications emerge. 

Different UAV types have specific strengths and 

limitations, and their selection depends on the 

requirements of the particular application                         

 
Figure 2: Unmanned aerial vehicle categorization 

 

UAVs can be grouped according to their 

construction or according to how well they can fly. In 

Figure. 2, the classification is displayed. There are three 

primary types of UAVs, referred to as HALE, MALE, and 

VTOL, depending on their ability to fly. HALE (high 

altitude long endurance) can fly over 9000 m and has long 

flight endurance whereas MALE (medium altitude long 

endurance) can fly up to 9000 m. The capacity to take off 

and land vertically is a feature of VTOL (vertical take-off 

and landing). In addition, VTOL can transition to 

horizontal flight by the action of the propeller after 

ascending to a predetermined height above sea level [13]. 

 

III.  REINFORCEMENT LEARNING 
 

 

 
 

Figure 3: Reinforcement Learning Control Loop 

 

            RL is a type of machine learning that involves an 

agent interacting with an environment to learn through trial 

and error by maximizing a reward signal. By enabling 

UAVs to learn from their experiences and adjust to new 

environments, RL in UAVs aims to improve their 

performance. The application of RL algorithms in UAVs 

enables them to accomplish complicated tasks with more 

precision and efficiency by allowing them to make 

decisions based on their observations and actions in the 

environment. A type of machine learning called 

reinforcement learning (RL) enables an agent to pick up 

knowledge from its surroundings by getting feedback in 

the form of rewards or penalties. Reinforcement learning 

can be used to create autonomous control systems for 

unmanned aerial vehicles (UAVs) that allow them to carry 

out tasks like navigation, exploration, and surveillance. 

The basic goal of reinforcement learning is to identify an 

optimal policy, or set of guidelines, for the agent to use 

while making decisions. As the agent interacts with its 

environment and experiences rewards or penalties as a 

result of its behaviors, it gradually learns the policy 

through trial and error. [6] In a general RL model, an agent 

controlled with an algorithm, observes the system state st 

at each time step t and receives a reward rt from its 

environment/system after taking the action at. After taking 

an action based on the current policy Pi, the system 

transitions to the next state st+1. After every interaction, 

RL agent updates its knowledge about the environment. 

Figure 3 [5] depicts the schematic of the RL process. 

Reinforcement learning can be applied to UAVs to create 

autonomous control systems that allow the UAV to 

manoeuvre through challenging settings, avoid obstacles, 

and carry out particular missions. For instance, a UAV 

might be taught to fly over a predetermined region and 

take images of particular things or places without running 

into other things or other aircraft. Swarm intelligence 

algorithms, which allow a collection of UAVs to 

collaborate and carry out complicated tasks like 

coordinating search and rescue operations or mapping 

broad areas, can also be created using reinforcement 

learning. Overall, reinforcement learning has the potential 

to allow UAVs to function effectively and autonomously 

in a variety of conditions, making them attractive tools for 

a variety of applications. [15] 

There are three main types of RL algorithms: 

value-based, policy-based, and actor-critic methods. 

Value-based methods learn a value function that estimates 

the expected reward of being in a given state or taking a 

particular action. 6 Policy-based methods learn a policy 

directly that maps states to actions. Actor�critic methods 

combine both value-based and policy-based methods, 

where the policy is learned by an actor network, and the 

value function is learned by a critic network. One popular 

RL algorithm is the deep Q-network (DQN), which is a 

value-based RL algorithm that combines Q-learning with 

deep neural networks to enable learning from high-
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dimensional input spaces. DQN has been successfully 

applied to various domains, including Atari games and 

robotic control tasks. [9]  

RL algorithms come in a variety of forms, 

including:  

• Value-based algorithms: These algorithms 

learn a value function that estimates the expected 

cumulative reward for each state or state-action pair. 

Examples include Q-learning and SARSA. 

 • Policy-based algorithms: These algorithms 

learn a policy directly, without estimating value functions. 

Examples include REINFORCE and policy gradient 

methods.  

• Model-based algorithms: These algorithms 

learn a model of the environment, which can be used to 

simulate future states and rewards. Examples include 

Dyna-Q and Monte Carlo tree search.  

• Actor-critic algorithms: These algorithms 

combine elements of both value-based and policy-based 

methods by using two separate networks, one to estimate 

values and one to determine actions. Examples include 

A2C and A3C. [17]  
 

IV.  APPLICABILITY OF 

REINFORCEMENT LEARNING IN 

VARIOUS DISCIPLINES 
 

In Agriculture: Reinforcement learning (RL) is a 

type of machine learning that involves training an agent to 

make decisions based on maximizing a reward signal. RL 

has a variety of potential applications in agriculture, from 

optimizing crop yields to reducing the use of harmful 

chemicals.  
• Crop yield optimization: RL has been used to optimize 

crop yield by learning to make decisions about irrigation, 

fertilization, and other factors. In one study, RL was used 

to optimize the yield of a tomato crop by controlling the 

irrigation system [1]. The RL agent was able to achieve a 

30 percent improvement in yield compared to a rule-based 

system. 

• Pest control: RL has been used to develop strategies for 

controlling pests in crops. In one study, RL was used to 

optimize the use of pheromone traps for controlling the 

tomato leafminer pest [2]. The RL agent was able to 

reduce the number of traps needed by 35 percent, while 

maintaining the same level of pest control.  

• Precision agriculture: RL has been used to develop 

strategies for optimizing the use of resources in precision 

agriculture. In one study, RL was used to optimize the use 

of nitrogen fertilizer in a wheat crop [10]. The RL agent 

was able to reduce the use of fertilizer by 50 percent, while 

maintaining the same level of yield.  

• Livestock management: RL has been used to optimize 

the management of livestock by learning to make decisions 

about feed, water, and other factors. In one study, RL was 

used to optimize the feed intake of dairy cows [3]. The RL 

agent was able to reduce the amount of feed needed by 12 

percent, while maintaining the same level of milk 

production.  

In Transportation: Reinforcement learning has 

been used in transportation to improve the efficiency and 

safety of various transportation systems, such as 

autonomous vehicles, traffic signal control, and route 

planning.  

• Reinforcement learning in transportation is the use of 

deep reinforcement learning for traffic signal control. The 

study demonstrates that the proposed method outperforms 

traditional traffic signal control methods and achieves 

better traffic flow efficiency. [4]  

• Use of reinforcement learning for route planning in 

autonomous vehicles. a multi-agent reinforcement learning 

approach for robust route planning in autonomous driving 

[19]. The proposed method considers uncertainties in 

traffic flow and other external factors and achieves better 

performance compared to traditional route planning 

methods. Overall, reinforcement learning has the potential 

to revolutionize transportation systems by improving 

efficiency, reducing traffic congestion, and enhancing 

safety. 

In Surveillance: Reinforcement learning has 

been applied to the field of surveillance to improve the 

efficiency and effectiveness of surveillance systems. 

• Application of reinforcement learning in surveillance is 

the use of deep reinforcement learning for object tracking. 

[11] explores the use of deep reinforcement learning to 

track objects in surveillance videos. The study 

demonstrates that the proposed method achieves better 

performance than traditional object tracking methods and 

is more robust to object occlusion and other challenges.  

• reinforcement learning for anomaly detection in 

surveillance videos. A method for anomaly detection in 

surveillance videos using deep video frame prediction and 

reinforcement learning [7]. The proposed method 

considers temporal and spatial information in the 

surveillance video and achieves better performance 

compared to traditional anomaly detection methods. 

Overall, reinforcement learning has the potential to 

improve the accuracy and efficiency of surveillance 

systems by enabling automated detection and tracking of 

objects of interest and anomalies in surveillance videos. 

 

V.      LITERATURE REVIEW 
 

”The proposed approach offers a promising 

solution for addressing the challenges associated with 

UAV navigation and control in GPS-denied environments 

using Reinforcement Algorithm.” 
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S. No Name  Year Finding Algorithm 

Used 

Limitation Accuracy 

1. L. Cui 2022 Improved 

trajectory 

planning 

DDPG Limited 

exploration in 

high-

dimensional 

action space 

85 

2. Woonghee 

Lee 

2022 The proposed 

system 

constructs the 

more reliable 

and robust SI 

(Swarm 

Intelligence) 
for UAV 

systems 

federated 

reinforcement 

learning- 

(FRL 

Limited to 

indoor 

environment 

80 

3. Kong et 

al. 

2021 Reinforcement 

learning can 

be used for 

adaptive UAV 

control in a 

dynamic 

environment 

Deep 

Reinforcement 

Learning 

N/A N/A 

4. Liangliang 

and Lu 

2021 Navigated a 

swarm of 

UAVs in a 

dynamic 

environment 

using 
collaborative 

multi-agent 

reinforcement 

learning. 

Multi-Agent 

Deep 

Deterministic 

Policy 

Gradient 

(MADDPG) 

Assumes 

perfect 

communication 

and sensing 

capabilities 

and does not 
consider 

communication 

failures or 

network 

delays. 

Better 

formation 

maintenance 

and obstacle 

avoidance 

than the 
baseline 

approach 

5. Ahmed H. 

Tewfik et 

al. 

2021 Reinforcement 

learning is a 

promising 

approach for 

UAV path 

planning and 

obstacle 

avoidance 

Q-learning N/A N/A 

6. Jin-Woo 

Lee 

2021 Local 

Dynamic Map 
Generation for 

Safe UAV 

Navigation 

Local 

Dynamic Map 
(LDM) 

Generation 

Algorithm 

limited real 

world testing 

N/A 

7. Akash 

Singhania 

2021 Developed an 

RL-based 

approach for 

UAV path 

planning 

Actor-critic Assumes that 

the UAV’s 

sensors are 

perfect 

N/A 

8. Benjamin 

Noack 

2020 Developed an 

RL-based 

approach for 

UAVs to 

navigate in a 

city 

Deep 

Q�network 

Assumes that 

the UAV’s 

sensors are 

perfect 

90 

9. Shang, 

Chao 

2020 Multi-UAV 

autonomous 

cooperative 
transportation 

using deep 

reinforcement 

learning 

Multi-Agent 

Deep 

Deterministic 
Policy 

Gradient 

(MADDPG) 

Limited real 

world testing 

High 

10. Chen, 

Liang 

2020 Autonomous 

flight control 

for UAVs 

using deep 

reinforcement 

learning 

Deep 

Q�Network 

(DQN) 

Limited 

real�world 

testing 

High 

11. Xiang Li 2020 Used RL to 

develop a 
system for 

UAVs to 

navigate in a 

city 

Proximal 

policy 
optimization 

Assumes that 

the UAV’s 
sensors are 

perfect 

90 

12. Kong, Xi-

angwei 

2019 Distributed 

multi-UAV 

path planning 

using deep 

reinforcement 

learning 

Multi-Agent 

Deep 

Deterministic 

Pol�icy 

Gradient 

(MADDPG) 

High 

computational 

complexity 

High 

13. Liu, Hong 2019 Real-time 

obstacle 

avoidance for 

UAVs using 

deep 
reinforcement 

learning 

Deep 

Q�Network 

(DQN) 

Limited testing 

in dynamic 

environments 

High 

14. Saad, 

Mohamad 

2019 Cooperative 

path planning 

of multiple 

UAVs using 

deep R- 

learning 

Multi-Agent 

Deep 

Deterministic 

Policy 

Gradient 

(MADDPG) 

Limited to a 

fixed number 

of UAVs 

High 

15. Loianno, 

Giuseppe 

2018 GPS-denied 

indoor flight 

control for 

UAVs using 

deep 

reinforcement 

learning 

Deep 

Deterministic 

Pol�icy 

Gradient 

(DDPG) 

Limited to 

indoor 

environments 

High 

16. Fan et al. 2018 Deep 

reinforcement 

Deep Q-

Network 

N/A 85.3 

learning can 

be used to 

enable 

autonomous 

UAVs to fly 

through 
cluttered 

environments 

(DQN) 

17. Wang et 

al. 

2018 Coordinated 

multiple 

UAVs in a 

search and 

localization 

task using 

deep 

reinforcement 

learning. 

Deep Q-

Network 

(DQN) 

Relying on a 

centralized 

communication 

network for 

coordination 

may not be 

practical in 

real-world 

scenarios. 

Better 

search 

efficiency 

and 

localization 

accuracy 

than the 

baseline 

approach. 

 

VI.  REINFORCEMENT LEARNING’S 

LIMITATIONS IN UAVS 
 

Reinforcement learning (RL) is a popular 

machine learning technique used for training agents to 

make decisions based on rewards and punishments 

received in response to their actions. RL has been used in 

the field of unmanned aerial vehicles (UAVs) for tasks 

such as autonomous navigation, target tracking, and search 

and rescue operations. However, RL also has some 

limitations when it comes to UAVs:  

1. Sample Efficiency: RL requires a lot of data to learn a 

task, which can be time-consuming and expensive for 

UAVs as they are often limited by battery life and flight 

time. 

2. Safety: UAVs operate in complex environments where 

safety is a critical concern. RL may not always guarantee 

safe operation, and it may take a long time for an RL agent 

to learn safe behavior in uncertain and unpredictable 

environments.  

3. Generalization: RL agents are often trained on a 

specific task and may not generalize well to new 

environments or situations. In the case of UAVs, this 

means that an RL agent trained in one environment may 

not perform well in a different environment or scenario.  

4. Exploration vs. Exploitation tradeoff: RL agents need 

to balance exploration (trying new actions to gather 

information) and exploitation (using the actions that have 

worked in the past) to maximize the reward. In the case of 

UAVs, exploration can be risky and can lead to crashes or 

other safety issues.  

5. Limited interpretability: The decisions made by RL 

agents are often difficult to interpret, which can be 

problematic for UAVs where human operators need to 

understand the reasoning behind an agent’s actions. 

             Overall, while RL has shown promising results in 

the field of UAVs, it is important to be aware of its 

limitations [14] and to use it in combination with other 

techniques to ensure safe and effective operation. 
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VII.  CHALLENGES OF 

REINFORCEMENT LEARNING IN UAVS 
 

Reinforcement learning (RL) is a popular 

technique used for training autonomous agents to perform 

complex tasks. However, applying RL to unmanned aerial 

vehicles (UAVs) comes with several challenges, including:  

1. Limited Flight Time: UAVs have limited battery life 

and flight time, making it challenging to collect enough 

data to train an RL agent.  

2. Safety: UAVs operate in complex and dynamic 

environments, and safety is a critical concern. RL agents 

may not always learn safe behavior, and it can be time-

consuming and expensive to ensure that an RL agent has 

learned to operate safely.  

3. Real-time Decision Making: UAVs need to make 

decisions in real-time based on changing environmental 

conditions. RL algorithms can be computationally 

expensive, making it challenging to train and deploy an RL 

agent in real-time.  

4. Generalization: RL agents can struggle to generalize to 

new environments or scenarios. In the case of UAVs, this 

means that an RL agent trained in one environment may 

not perform well in a different environment or scenario. 

5. Data Efficiency: RL requires a significant amount of 

data to learn a task. However, collecting data from UAVs 

can be challenging due to limited flight time and the high 

cost of equipment. 

6. Interpretability: RL agents can be difficult to interpret, 

which can be problematic for UAVs where human 

operators need to understand the reasoning behind an 

agent’s actions.  

7. Multi-agent Coordination: UAVs often operate in 

teams, and RL algorithms must learn how to coordinate the 

actions of multiple agents to achieve a common goal.               

Overall, while RL holds great promise for UAVs, 

addressing these challenges [16]is critical to ensure safe 

and effective operation. Researchers are actively working 

to develop new techniques and algorithms that can 

overcome these challenges and enable the widespread use 

of RL in UAVs. 
 

VIII.     CONCLUSION 
 

  In conclusion, this review paper has explored the 

recent developments and applications of unmanned aerial 

vehicles (UAVs) in reinforcement learning. The study has 

demonstrated that the combination of UAVs and 

reinforcement learning has shown promising results in 

various fields, including surveillance, agriculture, 

transportation, and search and rescue operations. The 

review has identified various reinforcement learning 

algorithms used for UAV control, including Q-learning, 

deep reinforcement learning, and policy gradient methods. 

Additionally, the review has highlighted the challenges 

associated with the application of reinforcement learning 

in UAVs, such as the high-dimensional action and state 

space, data efficiency, and safety concerns. Overall, the 

research on UAVs in reinforcement learning is still in its 

early stages, and further research is required to overcome 

the challenges and to extend the current applications. 

However, the potential of UAVs in combination with 

reinforcement learning is enormous, and it is expected that 

it will have a significant impact on the future of various 

industries. The findings of this review paper provide 

insights for researchers to identify research gaps, potential 

applications, and to develop effective algorithms for the 

control of UAVs using reinforcement learning. 
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