
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.31

 188 This work is licensed under Creative Commons Attribution 4.0 International License.

Software Understandability using Software Metrics: An Exhaustive

Review

Mohammad Saif Himayat
1
 and Dr. Jameel Ahmad

2

1
PG Student, Department of Computer Science & Engineering, Integral University, INDIA

2
Associate Professor, Department of Computer Science & Engineering, Integral University, INDIA

2
Corresponding Author: jameel@iul.ac.in

Received: 21-03-2023 Revised: 12-04-2023 Accepted: 29-04-2023

ABSTRACT
Stability and Understandability are two important

aspects of software architecture quality measurement.

Stability refers to the degree to which software architecture is

resistant to change. A stable architecture is one that can

accommodate changes with minimal impact on the overall

system. In other words, a stable architecture is one that can

evolve over time while maintaining its integrity. There are

several metrics used to measure the stability of a software

architecture, including the number of dependencies between

components, the number of changes required to implement a

new feature or fix a bug, and the amount of time it takes to

make changes to the architecture. A stable architecture will

have fewer dependencies between components, require fewer

changes to implement new features or fix bugs, and make

changes faster. Understandability refers to the degree to

which a software architecture can be easily understood by

developers and other stakeholders. An understandable

architecture is one that is easy to navigate and comprehend,

and that clearly communicates the system's design and

functionality. There are several metrics used to measure the

understandability of software architecture, including the

number of components and their relationships, the level of

abstraction used, and the degree of consistency between

different parts of the architecture. An understandable

architecture will have a clear structure and logical

organization, use consistent terminology and notation, and be

documented with clear explanations of its components and

their relationships. a software architecture that is both stable

and understandable will be easier to maintain, evolve, and

extend over time, reducing the risk of errors and improving

the overall quality of the system.

Keywords— Software Architecture, Software Engineering,

Stability, Quality Attributes, Understandability

I. INTRODUCTION

Software evaluation using software matrices is a

common practice to assess the quality of software.

Understandability is one of the key aspects of software

quality, which refers to the ease with which software can

be understood by its users, developers, and maintainers.

Some software matrices that can be used to

evaluate software understandability:

Halstead Software Metrics: These metrics were

developed by Maurice Halstead in the 1970s and measure

the complexity of software based on the number of

operators and operands used in the code. These metrics

include program length, vocabulary size, volume,

difficulty, and effort. Higher values of these metrics

indicate lower understandability.

Cyclomatic Complexity: This metric measures the

number of independent paths through a software program.

Higher values of cyclomatic complexity indicate a more

complex program and lower understandability.

Maintainability Index: This metric measures the ease

with which software can be maintained. It considers

factors such as code size, complexity, and documentation.

Higher values of the maintainability index indicate higher

understandability.

Code Readability Metrics: These metrics evaluate the

readability of the code, which is closely related to

understandability. Some examples of code readability

metrics include variable naming conventions, code

indentation, and comments. Lower values of these metrics

indicate lower understandability.

Cognitive Complexity Metrics: These metrics measure

the cognitive load required to understand the software.

They include metrics such as nesting level, control flow

complexity, and method complexity. Higher values of

cognitive complexity metrics indicate lower

understandability.

Software matrices can be useful in evaluating the

understandability of software. However, it is important to

note that these metrics should be used in conjunction with

other evaluation methods, such as user testing and code

reviews, to obtain a comprehensive understanding of

software quality.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.31

 189 This work is licensed under Creative Commons Attribution 4.0 International License.

II. METHODOLOGY

LOC in Software

Software development, LOC (lines of code) is a

metric used to measure the size of a software program. It

refers to the total number of lines of code in a software

system, including comments and blank lines.

The LOC metric is often used to estimate the

effort required to develop or maintain a software system

and to track the productivity of software developers.

However, it is important to note that the LOC metric has

limitations and should be used in conjunction with other

metrics to assess software quality.

One limitation of the LOC metric is that it does

not necessarily indicate the complexity or functionality of

a software system. Two programs with the same number of

lines of code can have vastly different functionality and

complexity, depending on the programming language,

coding style, and design.

Moreover, some programming languages, such as

Python, tend to have fewer lines of code than other

languages like C or Java, even though they may have

similar functionality. Thus, LOC may not always be a fair

comparison between programs written in different

programming languages.

LOC is a useful metric for measuring the size of a

software system, but it should not be the only metric used

to evaluate software quality. It is important to consider

other factors such as functionality, complexity,

maintainability, and performance when assessing the

overall quality of a software system.

Resource Standard Metrics (RSM)

Is a software tool that provides a suite of software

metrics to evaluate the quality and maintainability of

software systems. RSM can be used to analyze code

written in various programming languages, including C,

C++, Java, and COBOL.

Some of the metrics provided by RSM include:

Lines of Code (LOC): Measures the number of lines of

code in a software system, including comments and blank

lines.

Cyclomatic Complexity: Measures the number of

independent paths through a software program and can be

used to estimate the testing effort required for a software

system.

Halstead Complexity Measures: Measures the

complexity of a software system based on the number of

operators and operands used in the code

Code Maintainability Index (CMI): Measures the ease

with which a software system can be maintained, based on

factors such as code size, complexity, and documentation.

Depth of inheritance: Measures the number of levels in an

inheritance hierarchy and can be used to evaluate the

design and maintainability of object-oriented software

systems.

RSM also provides various reports and

visualizations to help developers and project managers

interpret and understand the software metrics. For

example, the "Code Structure Report" provides an

overview of the software system's organization and

complexity, while the "Function Metrics Report" provides

detailed metrics for individual functions or modules.

Web document information extraction using the

class attribute approach is a technique used to extract

relevant data from HTML web pages. This approach

involves analyzing the HTML structure of the page and

identifying elements that are tagged with specific class

attributes. Class attributes are used to group similar

elements together and provide a way for developers to

apply styles and formatting to specific elements [1]

III. PRIOR APPROACH

Software Engineering and Machine Learning

Software engineering and machine learning are

two fields that have become increasingly intertwined in

recent years, as machine learning techniques have become

more prevalent in software development. Machine learning

refers to the use of statistical algorithms and models to

enable computers to learn and make predictions or

decisions without being explicitly programmed.

Some examples of how software engineering and

machine learning are being used together:

Predictive Maintenance: Machine learning algorithms

can be used to analyze data from sensors in industrial

equipment and predict when maintenance is needed. This

can help Reduce downtime and improve efficiency.

Natural Language Processing (NLP): NLP techniques,

which are used to analyze and understand human language,

are often used in software applications such as chatbots,

virtual assistants, and customer service systems.

Image and Video Recognition: Machine learning

algorithms can be trained to recognize and classify images

and videos, which can be used in applications such as

security systems, autonomous vehicles, and medical

imaging.

Fraud Detection: Machine learning algorithms can

analyze transaction data and detect patterns that indicate

fraudulent activity, which can be used in applications such

as banking and e-commerce.

Personalization: Machine learning can be used to analyze

user data and provide personalized recommendations and

experiences in applications such as social media, e-

commerce, and entertainment.

To effectively apply machine learning techniques

in software engineering, developers need to have a solid

understanding of both fields. This includes knowledge of

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.31

 190 This work is licensed under Creative Commons Attribution 4.0 International License.

programming languages, software design principles, and

machine learning algorithms and techniques. Collaboration

between software engineers and data scientists is also

important to ensure that machine learning models are

effectively integrated into software applications and meet

the requirements of end-users [2].

IV. SOFTWARE ENGINEERING WITH

TASK SCHEDULING

Task scheduling is an important aspect of

software engineering that involves the scheduling and

allocation of tasks and resources within a software system.

Task scheduling is particularly important in real-time

systems and multi-tasking systems, where tasks need to be

scheduled and executed in a timely and efficient manner.

Here are some key concepts related to task

scheduling in software engineering.

Preemptive vs. Non-Preemptive Scheduling: Preemptive

scheduling allows higher-priority tasks to interrupt lower-

priority tasks, while non-preemptive scheduling does not

allow interruptions. Preemptive scheduling is often used in

real-time systems where responsiveness is critical

Round-Robin Scheduling: In round-robin scheduling,

each task is allocated a fixed amount of time to execute,

and tasks are executed in a circular order. This ensures that

all tasks are executed fairly and can help prevent starvation

Priority scheduling: In priority scheduling, tasks are

assigned a priority level, and higher-priority tasks are

executed first. This can be useful in real-time systems

where certain tasks have higher urgency than others [3].

Task Dependencies: In complex software systems, tasks

may have dependencies on other tasks or resources. Task

scheduling algorithms need to take these dependencies into

account to ensure that tasks are executed in the correct

order and that resources are allocated appropriately [4].

Effective task scheduling is essential for ensuring

the reliability and performance of software systems.

Software engineers need to carefully analyze the

requirements of the system and design task scheduling

algorithms that meet those requirements while considering

factors such as task dependencies, resource constraints,

and real-time responsiveness. There are also software tools

available that can assist with task scheduling and resource

allocation, such as scheduling algorithms and simulators

[5].

Load balancing: Load balancing involves

distributing tasks across multiple processors or nodes to

ensure that resources are utilized efficiently, and tasks are

executed in a timely manner [6].

V. SOFTWARE METRICES USED FOR

ANOMOLY DETECTION

Software metrics can be used for anomaly

detection in software development projects. Anomalies are

deviations from the expected behavior or normal patterns

in software development, and they can occur due to a

variety of reasons such as coding errors, data quality

issues, security breaches, and performance problems.

software metrics and identifying anomalies, software

developers can take corrective actions to address the

underlying issues and improve the quality, reliability, and

security of the software system. However, it's important to

note that software metrics are just one tool for anomaly

detection and should be used in conjunction with other

techniques, such as code reviews, testing, and monitoring

[7,8].

VI. SOFTWARE METRICES FOR

INFORMATION SECURITY

FRAMEWORK

Software metrics can be used to measure and

improve an organization's Information Security

Framework (ISF)[9]. Here are some common software

metrics that can be used for an ISF, organizations can

identify areas where their ISF needs improvement and take

corrective actions to address the underlying issues [8].

However, it's important to note that software metrics are

just one tool for measuring and improving an ISF and

should be used in conjunction with other techniques, such

as risk assessments, security audits, and employee

feedback [10]

VII. VARIOUS SOFTWARE METRICS

USED FOR SOFTWARE SYSTEM MODEL

Software developers can identify areas where

their software system models need improvement and take

corrective actions to address the underlying issues.

However, it's important to note that software metrics are

just one tool for measuring and improving software system

models and should be used in conjunction with other

techniques, such as peer reviews, testing, and

documentation [11].

VIII. CONCLUSION

 Software understandability refers to the ease with

which software can be understood by its users, including

software developers, maintainers, and end-users. There are

several software metrics that can be used to measure

software understandability. software metrics and taking

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.31

 191 This work is licensed under Creative Commons Attribution 4.0 International License.

corrective actions to address issues, software developers

can improve the overall understandability of their software

programs. This, in turn, can improve software quality,

reduce maintenance costs, and enhance end-user

satisfaction. Software matrices can be used to monitor the

software system model, it can be used to establish the

security of the system. various anomaly can be detected

and corrected and many more.

REFERENCES

[1] S. Srivastava, M. Haroon & A. Bajaj. (2013).

Web document information extraction using class

attribute approach. 4th International Conference

on Computer and Communication Technology

(ICCCT), Allahabad, India, pp. 17-22. DOI:

10.1109/ICCCT.2013.6749596.

[2] Haroon, M., Tripathi, M. M. & Ahmad, F. (2020).

Application of machine learning in forensic

science. In: Critical Concepts, Standards, and

Techniques in Cyber Forensics, pp. 228-239.

[3] R. Khan, M. Haroon & M. S. Husain. (2015).

Different technique of load balancing in

distributed system: A review paper. Global

Conference on Communication Technologies

(GCCT), Thuckalay, India, pp. 371-375. DOI:

10.1109/GCCT.2015.7342686.

[4] M. Haroon & M. Husain. (2015). Interest

attentive dynamic load balancing in distributed

systems. 2nd International Conference on

Computing for Sustainable Global Development

(INDIA Com), New Delhi, India, pp. 1116-1120.

[5] Haroon, M. & Husain, M. (2013). Analysis of a

dynamic load balancing in multiprocessor

system. International Journal of Computer

Science engineering and Information Technology

Research, 3(1).

[6] Wasim Khan & Mohammad Haroon. (2022). An

unsupervised deep learning ensemble model for

anomaly detection in static attributed social

networks. International Journal of Cognitive

Computing in Engineering, 3, 153-160. DOI:

https://doi.org/10.1016/j.ijcce.2022.08.002.

[7] Khan, W. (2021). An exhaustive review on state-

of-the-art techniques for anomaly detection on

attributed networks. Turkish Journal of Computer

and Mathematics Education

(TURCOMAT), 12(10), 6707-6722.

[8] Husain, Mohammad Salman & Haroon, Dr.

Mohammad. (2020). An enriched information

security framework from various attacks in the

IoT. International Journal of Innovative Research

in Computer Science & Technology (IJIRCST),

8(3). Available at:

https://ssrn.com/abstract=3672418.

[9] Husain & Mohammad Salman. (2020). A review

of information security from consumer’s

perspective especially in online transactions.

International Journal of Engineering and

Management Research, 10(4). Available at:

https://ssrn.com/abstract=3669577.

[10] A. M. Khan, S. Ahmad & M. Haroon. (2015). A

comparative study of trends in security in cloud

computing. Fifth International Conference on

Communication Systems and Network

Technologies, Gwalior, India, pp. 586-590. DOI:

10.1109/CSNT.2015.31.

[11] Haroon, M., & Husain, M. (2013). Different types

of systems models for dynamic load

balancing. IJERT, 2(3).

