
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.37

 220 This work is licensed under Creative Commons Attribution 4.0 International License.

A Review Paper on Software Defect Prediction Based on Rule Mining

Fareha Bashir
1
 and Dr. Akbar Shaun

2

1
PG Student, Department of Computer Science & Engineering, Integral University, Lucknow, INDIA

2
Assistant Professor, Department of Computer Science & Engineering, Integral University, Lucknow, INDIA

1
Corresponding Author: farehabashir62@gmail.com

Received: 29-03-2023 Revised: 12-04-2023 Accepted: 29-04-2023

ABSTRACT
Software defect prediction is an important task in

software engineering, aimed at identifying and mitigating

software defects before they become major problems. Rule

mining is a technique used to discover interesting patterns and

relationships in data, and can be applied to software defect

prediction by analyzing past data on software development

and testing. This abstract discusses the process of software

defect prediction based on rule mining, including data

collection, data pre-processing, feature extraction, rule

mining, model evaluation, and model deployment. By

accurately predicting the likelihood of defects occurring in

future software releases, developers can take proactive

measures to prevent defects from occurring, thereby

improving software quality and reducing the time and

resources spent on fixing bugs.

Keywords— Software Defect Prediction, Classification

Algorithm, Confusion Matrix, Rule Mining

I. INTRODUCTION

Software defects are a common occurrence in

software development, and can result in delays, increased

costs, and damage to a company's reputation. As such,

predicting and preventing defects has become an important

research area in software engineering. Software defect

prediction based on rule mining is a technique that

leverages machine learning algorithms to identify potential

software defects by analyzing past data on software

development and testing[1].

Rule mining is a process of discovering interesting

patterns and relationships in data. In the context of software

defect prediction, rule mining involves analyzing data on

software development and testing to identify patterns that

are indicative of potential defects. By identifying these

patterns, developers can take proactive measures to prevent

defects from occurring, such as improving code quality,

adjusting development processes, or providing additional

training to developers.

Software defect prediction based on rule mining

has become increasingly popular in recent years, as it

provides a data-driven approach to identifying potential

defects. By analyzing large datasets, machine learning

algorithms can identify patterns that may not be apparent to

human developers, thereby improving the accuracy of

defect predictions. This can result in improved software

quality and reduced costs, as developers can identify and fix

defects before they become major problems.

Software defect prediction based on rule mining is

a powerful technique that can help improve software quality

by identifying potential defects before they occur. By

leveraging machine learning algorithms to analyze past data

on software development and testing, developers can take

proactive measures to prevent defects, thereby reducing

costs and improving customer satisfaction.

II. EXISTING APPROACH ON

SOFTWARE DEFECT PREDICTION

BASED ON RULE MINING

There are several existing approaches to software

defect prediction based on rule mining, including:

1. Association Rule Mining

This approach involves using association rule

mining algorithms to identify correlations between different

variables in software development and testing data. These

correlations can be used to predict the likelihood of defects

occurring in future software releases[2].

Association Rule Mining is a data mining

technique that is widely used for analyzing large datasets to

identify patterns, correlations, and associations among

different variables. The mathematical model for

Association Rule Mining involves the following steps:

1. Let D be a dataset of transactions where each

transaction t consists of a set of items {i1, i2, ..., in}.

Let T be the set of all transactions in D.

2. Calculate the support and confidence of each rule R

in the form X → Y, where X and Y are sets of items.

The support of a rule R is defined as the fraction of

transactions in T that contain both X and Y. The

confidence of a rule R is defined as the fraction of

transactions in T that contain X and also contain Y.

3. Select rules with a minimum support and confidence

threshold. This threshold is set based on the specific

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.37

 221 This work is licensed under Creative Commons Attribution 4.0 International License.

application and the goals of the software

development team.

4. Use the selected rules to predict the likelihood of

defects occurring in future software releases. For

example, if a rule X → Y has a high support and

confidence, it may indicate that there is a strong

correlation between the items in X and Y, and that

the occurrence of X may increase the likelihood of

defects in software releases.

5. Evaluate the accuracy of the predictions using

metrics such as precision, recall, and F1-score. This

involves comparing the predictions made by the

model against actual outcomes to determine how

well the model is performing.

Association Rule Mining is a powerful technique for

software defect prediction that can be used to

identify patterns and correlations in software

development and testing data. By accurately

predicting the likelihood of defects occurring in

future software releases, developers can take

proactive measures to prevent defects from

occurring, thereby improving software quality and

reducing the time and resources spent on fixing

bugs[3].

2. Decision Tree-based Rule Mining

This approach involves building decision tree

models to identify the most important features or variables

that are predictive of software defects. These decision tree

models can be used to generate rules that predict the

occurrence of defects[4].

Decision Tree-based Rule Mining is a machine

learning technique that involves building decision tree

models to identify the most important features or variables

that are predictive of software defects. The mathematical

model for Decision Tree-based Rule Mining involves the

following steps

1. Let D be a dataset of software development and

testing data, where each record d consists of a set of

features {f1, f2, ..., fn} and a binary label indicating

whether the record corresponds to a defective

software release.

2. Build a decision tree model using the dataset D. The

decision tree model consists of a set of decision

nodes and leaf nodes, where each decision node

corresponds to a feature or variable, and each leaf

node corresponds to a predicted label.

3. Split the dataset at each decision node based on the

value of the corresponding feature or variable. The

goal is to maximize the purity of each split, such that

records with the same label are grouped together.

4. Calculate the impurity of each split using a measure

such as Gini impurity or information gain. The

impurity of a split is a measure of how well the split

separates records with different labels.

5. Prune the decision tree to reduce overfitting and

improve generalization. This involves removing

nodes that do not contribute to the predictive power

of the model.

6. Generate rules from the decision tree model by

traversing the tree from the root to each leaf node.

Each path from the root to a leaf node corresponds to

a rule that predicts the label of a record based on the

values of its features.

Use the generated rules to predict the likelihood of

defects occurring in future software releases. For example,

if a rule predicts a high likelihood of defects for software

releases with certain combinations of features, developers

can take proactive measures to prevent defects from

occurring in those releases.

Evaluate the accuracy of the predictions using

metrics such as precision, recall, and F1-score. This

involves comparing the predictions made by the model

against actual outcomes to determine how well the model is

performing.

Decision Tree-based Rule Mining is a powerful

technique for software defect prediction that can identify

the most important features or variables that are predictive

of defects. By accurately predicting the likelihood of

defects occurring in future software releases, developers

can take proactive measures to prevent defects from

occurring, thereby improving software quality and reducing

the time and resources spent on fixing bugs.

3. Bayesian Network-based Rule Mining

This approach involves building Bayesian network

models that represent the relationships between different

variables in software development and testing data. These

models can be used to generate rules that predict the

occurrence of defects[5].

Bayesian Network-based Rule Mining is a

probabilistic graphical model that uses Bayesian inference

to predict the likelihood of software defects. The

mathematical model for Bayesian Network-based Rule

Mining involves the following steps:

1. Let D be a dataset of software development and

testing data, where each record d consists of a set of

features {f1, f2, ..., fn} and a binary label indicating

whether the record corresponds to a defective

software release.

2. Build a Bayesian network model using the dataset D.

The Bayesian network model consists of a set of

nodes and edges, where each node corresponds to a

feature or variable, and each edge represents a

probabilistic dependency between two nodes.

3. Specify prior probabilities for each node in the

network. The prior probabilities reflect the domain

knowledge or beliefs about the probability

distribution of each variable before observing the

data.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.37

 222 This work is licensed under Creative Commons Attribution 4.0 International License.

4. Learn the conditional probability distributions of

each node given its parent nodes using maximum

likelihood estimation or Bayesian parameter

estimation. The conditional probability distributions

capture the probabilistic dependencies between

different variables.

5. Use the Bayesian network model to predict the

likelihood of defects occurring in future software

releases. This involves computing the posterior

probabilities of the defective label given the values

of the observed features.

6. Generate rules from the Bayesian network model by

examining the conditional probabilities and their

dependencies. Each rule corresponds to a

probabilistic relationship between the features and

the likelihood of defects.

7. Use the generated rules to identify the most

important features or variables that are predictive of

defects. By examining the conditional probabilities

and their dependencies, developers can determine

which features are most strongly associated with

defects.

8. Evaluate the accuracy of the predictions using

metrics such as precision, recall, and F1-score. This

involves comparing the predictions made by the

model against actual outcomes to determine how

well the model is performing.

Bayesian Network-based Rule Mining is a powerful

technique for software defect prediction that can capture

complex probabilistic dependencies between different

features and variables. By accurately predicting the

likelihood of defects occurring in future software releases,

developers can take proactive measures to prevent defects

from occurring, thereby improving software quality and

reducing the time and resources spent on fixing bugs.

4. Random Forest-based Rule Mining

Random Forest-based Rule Mining is a machine

learning technique that involves building an ensemble of

decision trees to predict the likelihood of software defects.

The mathematical model for Random Forest-based Rule

Mining involves the following steps:

1. Let D be a dataset of software development and

testing data, where each record d consists of a set of

features {f1, f2, ..., fn} and a binary label indicating

whether the record corresponds to a defective

software release.

2. Build an ensemble of decision trees using the dataset

D. The ensemble consists of a set of decision trees,

where each decision tree is built using a subset of the

features and a subset of the records in D.

3. Train each decision tree using a randomized feature

selection and a bagging technique to improve the

diversity and robustness of the ensemble. The

randomized feature selection involves selecting a

random subset of features at each node in the tree,

while the bagging technique involves sampling a

random subset of records with replacement.

4. Predict the likelihood of defects occurring in future

software releases by aggregating the predictions of

the decision trees in the ensemble. This involves

computing the majority vote or weighted average of

the predictions made by the decision trees.

5. Generate rules from the Random Forest model by

examining the most important features or variables

that are predictive of defects. The importance of each

feature can be measured using metrics such as mean

decrease impurity or mean decrease accuracy.

6. Use the generated rules to identify the most

important features or variables that are predictive of

defects. By examining the importance scores of each

feature, developers can determine which features are

most strongly associated with defects.

7. Evaluate the accuracy of the predictions using

metrics such as precision, recall, and F1-score. This

involves comparing the predictions made by the

model against actual outcomes to determine how

well the model is performing.

This approach involves building random forest

models that can identify the most important features or

variables that are predictive of software defects. These

models can be used to generate rules that predict the

occurrence of defects[6].

5. Neural Network-based Rule Mining

This approach involves building neural network

models that can identify patterns in software development

and testing data and generate rules that predict the

occurrence of defects[7].

These approaches have been shown to be effective

in identifying potential defects in software development and

testing data. However, the choice of approach may depend

on the specific characteristics of the data and the goals of

the software development team. It is important to evaluate

and compare different approaches to determine the most

effective approach for a given application.

1. Neural Network-based Rule Mining is a machine

learning technique that involves building a neural

network to predict the likelihood of software defects.

The mathematical model for Neural Network-based

Rule Mining involves the following steps:

2. Let D be a dataset of software development and

testing data, where each record d consists of a set of

features {f1, f2, ..., fn} and a binary label indicating

whether the record corresponds to a defective

software release.

3. Build a neural network model using the dataset D.

The neural network model consists of a set of nodes

and edges, where each node corresponds to a neuron

or unit, and each edge represents a weighted

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.37

 223 This work is licensed under Creative Commons Attribution 4.0 International License.

connection between two neurons.

4. Specify the architecture of the neural network,

including the number of layers, the number of

neurons per layer, the activation functions, and the

learning algorithm. The architecture of the neural

network can be optimized using techniques such as

grid search or random search.

5. Train the neural network model using the dataset D.

This involves adjusting the weights of the

connections between neurons to minimize the

prediction error on the training data. The training can

be performed using techniques such as

backpropagation or stochastic gradient descent.

6. Predict the likelihood of defects occurring in future

software releases using the trained neural network

model. This involves feeding the values of the

observed features into the input layer of the network

and propagating them through the hidden layers to

the output layer.

7. Generate rules from the neural network model by

examining the weights of the connections between

neurons. Each rule corresponds to a weighted

relationship between the features and the likelihood

of defects.

8. Use the generated rules to identify the most

important features or variables that are predictive of

defects. By examining the weights of the connections

between neurons, developers can determine which

features are most strongly associated with defects.

9. Evaluate the accuracy of the predictions using

metrics such as precision, recall, and F1-score. This

involves comparing the predictions made by the

model against actual outcomes to determine how

well the model is performing.

10. Neural Network-based Rule Mining is a powerful

technique for software defect prediction that can

capture complex nonlinear relationships between

different features and variables. By accurately

predicting the likelihood of defects occurring in

future software releases, developers can take

proactive measures to prevent defects from

occurring, thereby improving software quality and

reducing the time and resources spent on fixing bugs.

6. Web Document Information Extraction using Class

Attribute Approach for Rule Mining

Web document information extraction using class

attribute approach for rule mining is a technique that

involves extracting structured data from unstructured web

pages using class attributes and applying rule mining

techniques to extract patterns and rules from the extracted

data. the class attribute approach for web document

information extraction and rule mining is a powerful

technique for extracting structured data from unstructured

web pages and deriving useful patterns and rules from the

data. By applying rule mining techniques to the extracted

data, developers can gain valuable insights into the

structure and content of the web pages and use this

information to improve search engine optimization, content

management, data integration, and other applications [8].

7. Different Technique of Load Balancing for Defect

Prediction

Load balancing is an important technique for

defect prediction that involves distributing the workload

across multiple computing resources in order to optimize

performance and improve accuracy[9]. There are several

different techniques of load balancing that can be used for

defect prediction. load balancing is a critical technique for

defect prediction that can help to optimize performance,

improve accuracy, and reduce the time and resources

required for software testing and development. By choosing

the right load balancing technique for a given application or

environment, developers can ensure that their defect

prediction models are robust, scalable, and reliable [10,11].

8. An Unsupervised Deep Learning Ensemble Model for

Defect Prediction

An unsupervised deep learning ensemble model

for defect prediction is a type of machine learning model

that uses unsupervised learning techniques to identify

patterns and anomalies in software code that may indicate

the presence of defects. The model consists of a group of

interconnected neural networks that work together to

analyze different aspects of the code and identify potential

issues. the unsupervised deep learning ensemble model for

defect prediction is a powerful approach that can help to

improve the accuracy and efficiency of software testing and

development. By using unsupervised learning techniques to

identify patterns and structures in the code, developers can

more quickly and accurately identify potential defects and

reduce the risk of introducing errors into the final

product[12,13].

9. An IOT Based Approach for Defect Prediction

An IoT-based approach for defect prediction

involves using data from sensors and other connected

devices to identify potential defects in software systems.

The approach uses machine learning and data analytics

techniques to analyze the data and identify patterns or

anomalies that may indicate the presence of defects[14]. an

IoT-based approach for defect prediction can provide real-

time insights into the performance of software systems,

allowing developers to identify potential issues before they

become major problems. By using data from connected

devices to monitor system performance and predict defects,

this approach can help to improve the reliability and

efficiency of software systems[15].

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-2 (April 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.2.37

 224 This work is licensed under Creative Commons Attribution 4.0 International License.

III. CONCLUSION

Defect prediction is an important area of software

engineering that aims to identify potential issues and

defects in software systems before they can cause serious

problems. There are various mathematical models and

approaches that can be used for defect prediction, ranging

from rule-based methods to machine learning and data

analytics techniques. Each approach has its own strengths

and limitations, and the choice of method will depend on

the specific needs and characteristics of the software system

being analyzed. Despite the challenges involved in defect

prediction, there are many potential benefits to using these

techniques in software engineering. By identifying and

addressing defects early in the development process,

software engineers can reduce the risk of introducing errors

into the final product, improve overall system reliability,

and increase user satisfaction. Moreover, by using machine

learning and data analytics techniques to analyze system

data and identify potential defects, developers can gain real-

time insights into system performance and make informed

decisions about how best to optimize and improve software

systems. defect prediction is a valuable area of research in

software engineering that can help to improve the quality,

reliability, and efficiency of software systems. By using a

combination of mathematical models and data analytics

techniques, software engineers can gain a deeper

understanding of system performance and make more

informed decisions about how best to optimize and improve

software systems.

REFERENCES

[1] Sahana, D. C. (2013). Software defect prediction

based on classication rule mining. Doctoral

Dissertation.

[2] Shao, Y., Liu, B., Wang, S. & Li, G. (2018). A

novel software defect prediction based on atomic

class-association rule mining. Expert Systems with

Applications, 114, 237-254.

[3] Jadhav, R. B., Joshi, S. D., Thorat, U. G. & Joshi,

A. S. (2020). Software defect prediction utilizing

deterministic and probabilistic approach for

optimizing performance through defect association

learning. International Journal, 8(6).

[4] Yoo, K., Shukla, S. K., Ahn, J. J., Oh, K. & Park,

J. (2016). Decision tree-based data mining and rule

induction for identifying hydrogeological

parameters that influence groundwater pollution

sensitivity. Journal of Cleaner Production, 122,

277-286.

[5] Yang, Z., Wan, C., Yang, Z. & Yu, Q. (2021).

Using Bayesian network-based TOPSIS to aid

dynamic port state control detention risk control

decision. Reliability Engineering & System

Safety, 213, 107784.

[6] Wang, S., Wang, Y., Wang, D., Yin, Y., Wang, Y.

& Jin, Y. (2020). An improved random forest-

based rule extraction method for breast cancer

diagnosis. Applied Soft Computing, 86, 105941.

[7] Boutorh, A. & Guessoum, A. (2016). Complex

diseases SNP selection and classification by hybrid

association rule mining and artificial neural

network—based evolutionary

algorithms. Engineering Applications of Artificial

Intelligence, 51, 58-70.

[8] Srivastava, S., Haroon, M. & Bajaj, A. (2013,

Sep). Web document information extraction using

class attribute approach. In: 4th International

Conference on Computer and Communication

Technology (ICCCT), pp. 17-22. IEEE.

[9] Khan, R., Haroon, M. & Husain, M. S. (2015,

Apr). Different technique of load balancing in

distributed system: A review paper. In: Global

Conference on Communication Technologies

(GCCT), pp. 371-375. IEEE.

[10] Haroon, M. & Husain, M. (2015, Mar). Interest

attentive dynamic load balancing in distributed

systems. In: 2nd International Conference on

Computing for Sustainable Global Development

(INDIACom), pp. 1116-1120. IEEE.

[11] Haroon, M. & Husain, M. (2013). Analysis of a

dynamic load balancing in multiprocessor

system. International Journal of Computer Science

engineering and Information Technology

Research, 3(1).

[12] Khan, W. & Haroon, M. (2022). An unsupervised

deep learning ensemble model for anomaly

detection in static attributed social

networks. International Journal of Cognitive

Computing in Engineering, 3, 153-160.

[13] Khan, W. & Haroon, M. (2022). An efficient

framework for anomaly detection in attributed

social networks. International Journal of

Information Technology, 14(6), 3069-3076.

[14] Husain, M. S. & Haroon, D. (2020). An enriched

information security framework from various

attacks in the IoT. International Journal of

Innovative Research in Computer Science &

Technology (IJIRCST).

[15] Khan, A. M., Ahmad, S. & Haroon, M. (2015,

Apr). A comparative study of trends in security in

cloud computing. In: Fifth International

Conference on Communication Systems and

Network Technologies, pp. 586-590. IEEE.

