A Review on the Roofs’ Design Influencing the Physical Environment in the Naturally Ventilated of Mosque Buildings

Nur Baitul Izati Rasli¹ and Nor Azam Ramli²

¹Dr., School of Civil Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, MALAYSIA
²Professor, School of Civil Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, MALAYSIA

¹Corresponding Author: nurbaitulizati@gmail.com

ABSTRACT

The modern pitch and domed roofs design of the Malaysian mosques was created as a symbolic of Muslim place of worship besides functioning as a filter to the outdoor climate. Malaysia is a country that is famous for the high air temperature and relative humidity and inconsistent air movement of local climate which can influence the indoor environment. The different roof designs of Malaysian mosques also give impact to the believers in conducting prayers and other activities inside the mosques. Therefore, this study is to investigate the difference of roof design that influenced the thermal comfort and believers’ convenience in the mosque's building. It was found that the traditional roof design of mosques in Malaysia was the pitched roof with two and three-stacked mosques whereas most of the modern roof design was the domed roof. Both the pitched and domed roof of the mosque's design had the ability to control the indoor air distribution inside the mosque building. The pitch roof had the ability to control the circulation of the indoor air movement to achieve the equilibrium state whereas the domed roof could stratify the outdoor cool air to replace the hot indoor air inside the mosque building. Therefore, the future researcher could focus more strategies in order to improve the roof design of mosque for better indoor air inside the mosque building.

Keywords— Domed Roof, Indoor Air, Mosque, Pitch Roof

I. INTRODUCTION

The external environment such as from the climate is the factor that influenced the internal load in the mosque's building (Azmi et al., 2021). Nowadays, most of the naturally ventilated mosques have been converted to the air-conditioned mosques (Hussin et al., 2018a) because the passive design strategies cannot be achieved alone in order to ensure better thermal comfort (Mushtaha and Helmy, 2017). Although this is the fastest action which could cool down the buildings, it could have a bad effect on the environment. Roof design is the major contribution of the energy consumption from the air-conditioned mosques building in Malaysia (Mohamed et al., 2022).

Mosque is one of the exclusive buildings because all the mosques orientated worldwide were designed facing the Qiblah (the Kaabah’s direction in Mekkah). Meanwhile, the architecture of the mosque’s building was different (Bakhlah & Hassan, 2012) and mostly influenced by the culture. According to Ahmad (1999), the Islamic revolution of mosque’s architecture was categorized to the vernacular, colonial, and modern. The mosque’s construction is one of the proofs of the admission of Islam in Islamic communities (Yan et al., 2015). The roof is one of the external buildings that is very important to focus because it would determine the thermal performance of the mosques. It included the design of the roof, the materials of the roof, the insulation of the roof, the shading and solar absorptance of the roof (Azmi, 2021).

II. LITERATURE REVIEW

The roofs design of mosques building in Malaysia.

a) The traditional roof design of mosques in Malaysia

Previously, most of the roof design of old mosques in Malaysia had been influenced by traditional Malay architecture. The traditional mosque building was built typically following the pitched roof style or known as pyramidal roof mosque. It is also shown as symbolic of life and environment (Johar et al., 2011; Hassan & Nawawi, 2014). In between the 16th and 17th century, there was detected for three-stacked pyramidal roof design in the Kampung Laut (the oldest mosque in Malaysia) whereas in the between 18th and 19th century there was detected for two-stacked pyramidal roof design in Papan Mosque in Perak and Lenggeng Mosque in Negeri Sembilan (Johar et al., 2011). The three and two-stacked pyramidal roof designs of mosques have the same constructions but with different layers of roof. Figure 1 shows the example of mosques with three and two-stacked pyramidal mosques.
The modern roof design of mosques in Malaysia

The doomed roof style was popular in the modern mosques building over the time. The doomed roof design was also popular in the mosques throughout the world. The doomed roof style in Malaysia is suitable for tropical climate change as it has advantages to allow rainwater flow and to minimize the heat gain in the mosque's building (Asfour, 2009; Hameed, 2011; Hadavand et al, 2008; Baharudin and Ismail, 2014). The 3 meters high dome with the propeller fan and small openings on the top and sides is functioning to cool down the indoor air temperature inside the mosque's building. The hot air is extracted to the outdoor atmosphere. Figure 2 shows the example of the doomed roof of a mosque with stack ventilation effect (Baharudin and Ismail, 2014). However, according to Maarof (2014), the process of development of the doomed roof from the traditional pitched roof mosques had taken many levels.

Figure 1: The traditional roof design of a mosque with three-stacked and two-stacked pyramidal roofs in Malaysia (Johar et al., 2011)

b) The modern roof design of mosques in Malaysia

Figure 3 illustrates the typical sketch of pitched and doomed roof design style with the position of the main prayer hall, office and verandah in Malaysia. The pitched roof design had been built in the 1990 in the past whereas the doomed roof design in the 1999 and over the time. Table 1 shows the example of roof design categories of mosques that use pitched and doomed style.

c) The illustration of pyramidal and domed roof design style in Malaysia

Figure 3 illustrates the typical sketch of pitched and doomed roof design style with the position of the main prayer hall, office and verandah in Malaysia. The pitched roof design had been built in the 1990 in the past whereas the doomed roof design in the 1999 and over the time. Table 1 shows the example of roof design categories of mosques that use pitched and doomed style.

Figure 2: The doomed roof of mosque with stack ventilation effect (Baharudin and Ismail, 2014)

Figure 3: The typical sketch of pitched and doomed roof design style in Malaysia (Maarof, 2014).
Table 1: The example of roofs design mosques that using pitched and domed style in Malaysia (Maarof, 2014)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of the mosque</th>
<th>Description</th>
<th>The picture of the mosque</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Masjid Al-Azim, Melaka</td>
<td>- A state mosque of Melaka - Officially opened in 1990 - Can occupy up to 11,700 people</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Masjid Putra, Putrajaya</td>
<td>- A state mosque - Completed in 1999 - Can occupy up to 10,000 people</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Masjid Tuanku Mizan, Putrajaya</td>
<td>- A state mosque - Completed in September 2009 - Can occupy up to 20,000 people</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Masjid Kariah Panchur Jaya, Negeri Sembilan</td>
<td>- A community mosque - Completed in 2007 - Can occupy up to 1000 people</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Masjid At Taqwa, Paroi, Negeri Sembilan</td>
<td>- A community mosque - Completed in 2011 - Can occupy up to 1000 people</td>
<td></td>
</tr>
</tbody>
</table>

The category of the roof: Pitched Roof

The category of the roof: Domed Roof

The roofs design of mosques building in the Worldwide.

Table 2: The example of roofs design style of mosques worldwide

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of the mosque</th>
<th>The category of the roof</th>
<th>Country</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Grand mosque</td>
<td>Moorish architecture</td>
<td>Paris</td>
<td>Farrag, (2017)</td>
</tr>
</tbody>
</table>
III. REVIEW METHODOLOGY

An extensive literature search was carried out using Web of Science, Scopus, and Google Scholar databases in order to obtain literature pertaining to roof design of mosque building toward the indoor environment.

IV. CONCLUSIONS

In conclusion, most of the traditional roof design was influenced by the origin of the place which was symbolic of life and environment. As in Malaysia the roof design was influenced by the traditional Malay architecture. The traditional pitched roof style of mosque or known as pyramidal roof mosque with three-stacked and two-stacked pyramidal roofs in Malaysia was detected since in between the 16th and 17th century and in the between 18th and 19th century, respectively. Meanwhile, most of the modern mosques in Malaysia and worldwide was influenced by the domed roof design which has the advantages which could allow the rainwater flow and minimize the heat gain in the mosque's building and suitable for the tropical climate.

FUNDING

This study was funded by EACAR, USM.

REFERENCES

