
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 239 This work is licensed under Creative Commons Attribution 4.0 International License.

Prediction Systems for Process Understandability and Software Metrics

Mohammad Saif Himayat
1
 and Dr. Jameel Ahmad

2

1
PG Student, Department of Computer Science & Engineering, Integral University, INDIA

2
Associate Professor, Department of Computer Science & Engineering, Integral University, INDIA

1
Corresponding Author: mshimayat@student.iul.ac.in

Received: 01-06-2023 Revised: 16-06-2023 Accepted: 30-06-2023

ABSTRACT
The abstract of this research study outlines the

objective of validating prediction systems for process

understandability and software metrics. In this study, we

focus on assessing the accuracy and reliability of prediction

systems that aim to provide insights into complex processes

and software-related metrics. The process of validation

involves defining clear objectives, gathering relevant data,

preprocessing the data, performing feature engineering,

selecting appropriate prediction models, and training and

validating these models using cross-validation techniques.

Additionally, we emphasize the importance of interpretability

and explainability in the prediction process, which enables us

to gain meaningful insights into the underlying processes.

Furthermore, a comparative analysis is conducted to

compare the predictions generated by the system with ground

truth or expert judgments, thereby ensuring the accuracy

and reliability of the predictions. The study adopts an

iterative refinement approach to enhance the performance,

interpretability, and usability of the prediction system based

on feedback and validation results. By following this

comprehensive validation process, we aim to establish reliable

prediction systems that provide meaningful understandability

of processes and software metrics.

Software metrics play a crucial role in assessing the

quality, maintainability, and performance of software

systems. However, understanding these metrics and their

implications can be challenging, especially for non-technical

stakeholders. This research study focuses on the

understandability of software metrics and proposes a

validation framework to assess the effectiveness of prediction

systems in providing understandable insights.

Keywords-- Software Metrics, Software Understandability,

Prediction Systems

I. INTRODUCTION

Software architectural structures form the

foundation of complex software systems, defining the

organization, relationships, and interactions between

various components[1,2,3]. The understandability of these

architectural structures is crucial for effective

communication, collaboration, and maintenance of

software systems. However, assessing and quantifying the

understandability of architectural structures can be

challenging due to their inherent complexity and the

subjective nature of human comprehensi[4,5]on.

Software metrics offer a systematic approach to

evaluate software qualities and characteristics. They

provide quantitative measures that aid in assessing

different aspects of software systems, including

understandability. By employing software metrics

specifically designed for measuring the understandability

of architectural structures, software practitioners and

stakeholders can gain valuable insights into the complexity

and comprehensibility of the software's architectural

design[6,7].

The purpose of this research study is to identify

and validate software metrics that effectively measure the

understandability of architectural structures. These metrics

will enable software practitioners to objectively evaluate

and improve the understandability of their architectural

designs, leading to more maintainable and robust software

systems[8,9,10].

In this study, we will review existing literature

and research related to software architecture,

understandability, and software metrics. We will explore

various architectural elements and their impact on

understandability, such as modules, components,

interfaces, and dependencies. By understanding the factors

that influence architectural understandability, we can

identify appropriate metrics that capture these

aspects[11,12,13].

The selected metrics may include complexity

measures, cohesion and coupling metrics, architectural

layering or modularity indices, and architectural

documentation coverage. Each metric will provide a

numerical value representing a specific aspect of

architectural understandability. These metrics will be

carefully chosen based on their relevance, reliability, and

applicability to architectural structures[14,15].

To validate the proposed metrics, an empirical

study will be conducted using real-world software systems.

These systems will represent a variety of architectural

styles and complexities. The identified metrics will be

calculated for each system, and subjective assessments of

understandability will be collected from software

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 240 This work is licensed under Creative Commons Attribution 4.0 International License.

practitioners. These assessments can be gathered through

expert reviews, surveys, or cognitive

walkthroughs[16,17,18].

Statistical analysis techniques, such as correlation

coefficients and regression models, will be applied to

analyze the relationship between the proposed metrics and

subjective assessments of understandability. This analysis

will help validate the metrics and determine their

effectiveness in predicting architectural understandability.

The validated metrics will serve as practical tools

for assessing the understandability of architectural

structures in real-world software development projects.

They will provide software practitioners and stakeholders

with objective indicators to identify areas of improvement,

detect potential design flaws, and guide architectural

decisions towards more comprehensible and maintainable

software systems[19.20,21].

The study begins by identifying a set of relevant

software metrics that are commonly used in software

development and maintenance. These metrics encompass

various aspects, such as code complexity, code

duplication, code churn, and software defect

density[22,23].

Next, a prediction system is developed to

generate predictions based on the selected metrics. The

system employs machine learning or statistical models to

analyze historical data and make predictions about future

software outcomes or characteristics[24,25].

To validate the understandability of the prediction

system, an evaluation framework is established. This

framework includes both quantitative and qualitative

measures. Quantitative measures assess the accuracy and

reliability of the predictions, while qualitative measures

focus on the comprehensibility and interpretability of the

generated insights[26,27].

The validation process involves collecting a

diverse dataset that includes software projects with varying

characteristics and complexity levels. The prediction

system is trained using this dataset, and its performance is

evaluated using appropriate metrics such as accuracy,

precision, recall, and F1-score[28].

To assess understandability, user studies, surveys,

or interviews may be conducted to gather feedback from

software practitioners and stakeholders. Their perception

of the generated predictions and insights is analyzed to

determine the effectiveness of the prediction system in

conveying understandable information about software

metrics. The results of the validation process are used to

refine and improve the prediction system. This iterative

approach ensures that the system becomes more accurate,

reliable, and understandable over time[29].

By validating prediction systems for software

metrics understandability, this research study aims to

provide valuable insights into the development and

maintenance processes, helping stakeholders make

informed decisions and take appropriate actions to improve

software quality and performance.

II. SUCCESSES AND FAILURES OF THE

SOFTWARE

Successes and failures in software development

are common occurrences that can have significant impacts

on projects and organizations. Let's explore some

examples of both successes and failures in software

development:

Successes: Release of a Stable and Functional Product: A

major success in software development is when a product

is released that meets or exceeds user expectations. The

software is stable, performs well, and fulfills its intended

purpose effectively.

Timely Delivery: Completing a software project on

schedule is considered a success. It demonstrates effective

project management, resource allocation, and adherence to

timelines. Timely delivery allows organizations to

capitalize on market opportunities and gain a competitive

advantage.

Positive User Feedback: When software receives positive

feedback from users, it indicates that the product is

meeting their needs and providing a satisfactory user

experience. Positive user feedback boosts customer

satisfaction and loyalty, which can lead to increased

adoption and revenue generation.

Effective Bug Fixing and Maintenance: Successfully

addressing bugs and maintaining software over time

demonstrates a commitment to quality and ongoing

improvement. Regular updates, bug fixes, and feature

enhancements contribute to the longevity and relevance of

the software[30].

Failures: Project Delays and Cost Overruns: One of the

most common failures in software development is when a

project exceeds its planned timeline and budget. This can

occur due to poor project management, inadequate

resource allocation, scope creep, or unexpected technical

challenges.

Poor User Experience: When software fails to provide a

user-friendly and intuitive experience, it can lead to

frustration, low adoption rates, and negative reviews. Poor

user experience often stems from inadequate user research,

ineffective design, or usability issues.

Critical Security Breaches: Security vulnerabilities in

software can lead to significant failures, compromising

sensitive user data, damaging a company's reputation, and

exposing organizations to legal and financial

repercussions. Neglecting proper security measures and

testing can result in severe consequences.

Software Defects and Unreliability: If a software product

contains significant defects or experiences frequent crashes

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 241 This work is licensed under Creative Commons Attribution 4.0 International License.

and errors, it can undermine user trust and damage the

reputation of the development team or organization. High

defect rates indicate a lack of thorough testing, quality

assurance, or coding standards.

Lack of Scalability and Adaptability

When software fails to scale effectively or adapt

to changing requirements, it can limit its usefulness and

hinder organizational growth. Inflexible software

architectures or inadequate planning for future needs can

contribute to this failure[31].

III. LIMITATIONS OF METRICS FOR

PREDICTING SOFTWARE QUALITY

While metrics play a significant role in assessing

and predicting software quality, they also have certain

limitations that need to be considered. Some of the

limitations of using metrics for predicting software quality

are:

1. Limited Coverage: Metrics may not capture all

aspects of software quality. They often focus on specific

measurable characteristics, such as code complexity, code

coverage, or defect density, while neglecting other

important qualitative factors like user experience,

maintainability, and scalability. This limited coverage may

result in an incomplete understanding of overall software

quality[32].

2. Lack of Contextual Information: Metrics

provide quantitative data but may not provide the

necessary contextual information to interpret the results

accurately. For example, a high defect density metric may

indicate poor quality, but without understanding the

complexity of the software or the severity of the defects, it

can be challenging to determine the actual impact on

quality.

3. Inherent Complexity: Software development is a

complex process, and software quality is influenced by

multiple interrelated factors. Metrics often simplify this

complexity by quantifying specific attributes, but they may

fail to capture the intricate dependencies and interactions

among different software components. Consequently,

relying solely on metrics may oversimplify the assessment

of software quality.

4. Lack of Standardization: There is often a lack

of standardized and universally accepted metrics for

measuring software quality. Different organizations or

domains may adopt their own set of metrics, leading to

inconsistencies and difficulties in comparing and

benchmarking software quality across different projects or

contexts. This lack of standardization hinders the

reliability and generalizability of metrics-based

predictions.

5. Subjectivity and Interpretation: The

interpretation of metrics and their thresholds can be

subjective and dependent on individual or organizational

perspectives. Different stakeholders may have varying

interpretations of what constitutes good or poor quality

based on the same metrics. This subjectivity can introduce

bias and lead to inconsistent predictions of software

quality.

6. Evolving Nature of Software: Software systems

are dynamic and constantly evolving. Metrics-based

predictions are often based on historical data and

assumptions that may not hold true in the future. As

software changes, new features are added, or technologies

evolve, the validity and relevance of metrics may diminish,

reducing their predictive power.

7. Human Factors: Metrics tend to focus on

technical aspects of software quality but may not

adequately consider human factors, such as user needs,

expectations, and satisfaction. Software quality is

ultimately determined by how well it meets user

requirements and provides a positive user experience,

which metrics may not fully capture.

8. To address these limitations, it is essential to

consider metrics as just one piece of the puzzle in

assessing software quality. Combining metrics with other

qualitative assessments, user feedback, and expert

judgment can provide a more comprehensive

understanding of software quality and improve the

accuracy of predictions. Additionally, regular evaluation

and refinement of metrics frameworks can help overcome

some limitations by adapting to changing software

development practices and incorporating new dimensions

of quality[33].

IV. FACTORS AFFECTING

SOFTWARE UNDERSTANDABILITY[1]

Software understandability is influenced by

various factors that can impact how easily developers and

other stakeholders comprehend and work with software

systems.

We defined the membership function in fuzzy

mathematics for different factors Software is maintained

through the integrated use of source code and documents.

Source code readability and quality of documentation

should be taken into account while measuring the software

maintainability. Comments Ratio (CR) is used to judge the

Readability of Source Code (RSC). Quality of

Documentation (QOD) is judged using Fog index[34].

understandability of software documentation we compiled

is composed of source code (RSC) and documents (QOD)

with membership function as follows:

(1) Membership functions for documents judged using Fog

index:

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 242 This work is licensed under Creative Commons Attribution 4.0 International License.

Membership functions for RSC judged using CR

V. FRAMEWORK FOR EVALUATING

MODELING TECHNIQUE

UNDERSTANDING

Based on work by Mayer [5], Gemino and Wand

proposed a framework for evaluating model understanding

for arbitrary modeling techniques [3]. They differentiate

between model creation (for representing parts of the real

world) and model reading (creating a mental representation

from a model) [3, p. 80]. In this paper, we deal with the

second point. For this purpose, they suggest a model for

knowledge construction and learning from models adapted

from Mayer: Content, presentation method and the model

viewer characteristics influence the knowledge

construction and consequently the learning outcome. This

cognitive process is not directly observable, but has to be

observed indirectly through learning performance tasks.

Here, Gemino and Wand list comprehension and problem-

solving tasks. The former include questions regarding

attributes of and relationships between model items—

while the latter include questions going beyond the

information given originally in the model. [3, pp. 82–83]

For our problem (process understandability),

comprehension tasks seem to be obvious.

VI. ASPECTS OF PROCESS

UNDERSTANDABILITY

As we already discussed in Section 4, it is

important to cover the different aspects of process

understandability to fulfill the content validity requirement

for metrics. In this paper, we concentrate on the aspects

order, concurrency, exclusiveness and repetition. Doing so,

we do not deny the possible existence of other aspects.

Unlike in [7], we will give detailed definitions of the

questions of the different aspects. We start with the

definition of the term ―activity period‖ which is later used

in our questions[35,36].

Activity Period

An activity period of task t is the period between

a point in time when t becomes executable and the next

point in time when the actual execution of t terminates.

Now, we c an define relations for the four aspects of

process understandability[37].

Order

For the questions about task order,

the relations

with the following meanings are used.

There is no process instance for

which an activity period of task t1 ends before an activity

period of task t2 starts[38].

,There is a process instance for which

an activity period of task t1 ends before an activity period

of task t2 starts.—But there also exists a process

instance for which this does not hold.

 , For each process instance, an activity

period of task t1 ends before an activity period of task t2

starts.

Concurrency

For the questions about task concurrency, the

relations

With the following meanings are

used. There is no process instance for

which the activity periods of tasks t1 and t2 overlap.(t1; t2)

2 c9 ,There is a process instance for which the activity

periods of tasks t1 and t2 overlap at least once (Several

executions of t1 and t2 per process instance are

possible!).—But there also exists a process instance for

which this does not hold[39].

 ,For each process instance, the activity

periods of tasks t1 and t2 overlap at least once.

Object-Oriented Metrics

When it comes to object-oriented programming,

several metrics can be used to assess the quality and

maintainability of code. These metrics specifically focus

on aspects related to object-oriented design principles and

concepts. Here are some commonly used metrics for

object-oriented code:

1. Class Coupling: Class Coupling measures the degree of

interdependence between classes in a codebase. It counts

the number of unique classes that a particular class relies

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 243 This work is licensed under Creative Commons Attribution 4.0 International License.

on or interacts with. High coupling indicates tight

dependencies, which can make code more difficult to

understand and maintain[40].

2. Cohesion: Cohesion measures how closely the methods

and attributes within a class are related to each other. High

cohesion suggests that the methods and attributes in a class

are closely related to its purpose and responsibilities,

leading to better code understandability and

maintainability.

3. Depth of Inheritance Tree (DIT): DIT measures the

number of inheritance levels in a class hierarchy. It

indicates the depth of the inheritance tree and the potential

complexity involved in understanding the relationships

between classes. High DIT values can imply increase

complexity and reduced understandability.

4. Number of Children (NOC): NOC measures the

number of immediate subclasses that inherit from a

particular class. Higher NOC values suggest a larger

number of derived classes, which can indicate a complex

class hierarchy and potentially affect code

understandability and maintainability.

5. Lack of Cohesion in Methods (LCOM): LCOM

measures the lack of cohesion within a class. It quantifies

the number of pairs of methods in a class that do not share

common attributes or methods. Higher LCOM values

suggest lower cohesion and can indicate potential design

issues that affect understandability and maintainability.

6. Weighted Methods per Class (WMC): WMC

measures the number of methods within a class, giving

each method a weight based on its complexity (e.g.,

cyclomatic complexity). It provides an indication of the

complexity and potential understandability challenges of a

class.

7. Response for a Class (RFC): RFC measures the

number of methods that can be invoked in response to a

message or request to a class, including its own methods

and those inherited from super classes. Higher RFC values

can indicate increased complexity and potentially impact

code understandability.

8. Lack of Cohesion in Hierarchies (LCH): LCH

measures the lack of cohesion within an inheritance

hierarchy. It quantifies the number of pairs of methods in

different classes within the hierarchy that do not share

common attributes or methods. Higher LCH values

indicate lower cohesion and can suggest potential issues

with the hierarchy's design and understandability.

These metrics provide insights into the design and

complexity of object-oriented code, highlighting areas that

may need attention to improve understandability and

maintainability. However, it's important to remember that

these metrics should be used in conjunction with other

qualitative assessments, code reviews, and the specific

context of the project to make informed decisions about

code quality and design.

VII. DATA ANALYSIS

To perform a data analysis of software

understandability using software metrics, you can follow

these general steps:

1. Define the Software Metrics: Identify the software

metrics that are relevant to understanding the code's

complexity, maintainability, and readability. This can

include metrics such as Cyclomatic Complexity, Lines of

Code (LOC), Coupling Between Objects (CBO), Lack of

Cohesion in Methods (LCOM), or any other metrics that

you find suitable.

2. Gather Data: Collect the required data for the selected

software metrics. This data can be obtained from the

source code repository, version control system, or static

code analysis tools. Ensure that you have the necessary

information, such as the number of classes, methods, lines

of code, and any other metrics you plan to analyze.

3. Calculate Metrics: Use appropriate formulas or

existing tools to calculate the software metrics for each

code component (class, method, etc.) in your dataset.

Apply the formulas to the relevant data points and

calculate the corresponding metric values.

4. Establish a Baseline: Determine a baseline or reference

point for software understandability. This can be done by

analyzing a representative sample of the codebase or by

using expert judgment. This baseline will serve as a

benchmark for comparison and evaluation.

5. Analyze the Data: Perform data analysis techniques to

gain insights into software understandability. This can

include statistical analysis, data visualization, correlation

analysis, or any other suitable techniques based on the

nature of the metrics and your research questions. Look for

patterns, trends, and relationships among the metrics to

identify factors that may impact understandability.

6. Interpret the Results: Interpret the results of the data

analysis to draw conclusions about software

understandability. Identify code components that deviate

significantly from the baseline or exhibit patterns

indicating low understandability. Investigate the potential

causes of these deviations, such as high complexity,

excessive coupling, or poor code structure.

7. Take Action: Based on the findings, determine

appropriate actions to improve software understandability.

This can involve refactoring code, improving

documentation, addressing high complexity areas, or

introducing coding guidelines and best practices.

8. Monitor and Iterate: Continuously monitor the

software metrics and repeat the analysis periodically to

track the progress of understandability improvements over

time. This iterative process helps in identifying areas that

still require attention and evaluating the effectiveness of

the actions taken.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 244 This work is licensed under Creative Commons Attribution 4.0 International License.

It's important to note that software

understandability is a multidimensional aspect influenced

by various factors. Therefore, a comprehensive analysis

may involve considering multiple software metrics

simultaneously and integrating qualitative assessments

from developers or code reviewers to get a holistic view of

understandability.

Software Understandability Based on Fuzzy Matrix

Software understandability is a subjective

measure that depends on multiple factors and cannot be

precisely quantified. However, fuzzy logic can be applied

to create a fuzzy matrix that assesses the understandability

of software based on linguistic variables. The fuzzy matrix

allows for representing and reasoning about imprecise and

uncertain information. Here's a general approach to

constructing a fuzzy matrix for software understandability:

1. Identify linguistic variables: Determine the linguistic

variables that contribute to software understandability.

These variables can include code readability, complexity,

modularity, naming conventions, documentation, and so

on. Each linguistic variable should have a set of linguistic

terms or labels that represent different levels or degrees.

2. Define membership functions: For each linguistic

term, define membership functions that describe the degree

of membership or relevance to that term. Membership

functions can be triangular, trapezoidal, Gaussian, or any

other suitable shape that represents the fuzzy membership.

3. Determine fuzzy rules: Establish a set of fuzzy rules

that map the input linguistic variables to the output

linguistic variable, which represents the understandability

level. These rules capture expert knowledge or heuristics

about how different linguistic variables influence software

understandability. For example, a rule might state that if

the code readability is "high" and the modularity is

"moderate," then the understandability is "good."

4. Evaluate linguistic variables: Assess the linguistic

variables based on their corresponding membership

functions. Evaluate the linguistic terms for each variable to

determine the degree to which they apply to the software

being analyzed. This evaluation can involve linguistic

assessments by experts or automated analysis techniques.

5. Apply fuzzy inference: Utilize fuzzy inference

methods, such as Mamdani or Sugano, to compute the

output fuzzy set for understandability based on the fuzzy

rules and the evaluated linguistic variables. Fuzzy

inference combines the fuzzy rules and their degrees of

applicability to derive a fuzzy output.

6. Defuzzification: Convert the fuzzy output into a crisp

value using defuzzification techniques. Common methods

include centroid, mean of maxima, and weighted average.

7. Interpretation: Interpret the crisp value obtained from

defuzzification as a numerical representation of the

software's understandability level. This value can be

mapped to linguistic terms, such as "low," "medium," or

"high," to provide a more human-readable understanding

of the software's understandability.

It's important to note that constructing a fuzzy

matrix for software understandability requires domain

expertise and knowledge. The fuzzy matrix should be

continuously refined and validated based on real-world

data and expert feedback to ensure its accuracy and

effectiveness in capturing software understandability.

Measured Software Artefacts and Attributes (RQ1)

Different authors claim the importance of both,

metrics that measure individual artefacts (components) in

the system and metrics that measure the whole

architectural

 60

50

48%

P
e
rc

e
n
ta

g
e

40
40%

30

 20
 12%

 10

 0

Internal structure Graph based metrics Specific model based
based metrics metrics

Figure 1: The distribution of the studies related to the

approach type

etc.). For example, the metrics like the total number of

components or links in the system’s component view

represent the metrics related to the architecture artefact.

The metrics related to the component artefact are defined

from different authors using the term component as a high-

level artefact in different contexts. Kanjilal et al. [32]

considers component as a system element that can be

composed with other components, offers a predefined

service and is able to communicate with other components.

Misic [47] considers component as a set of objects at

different abstraction levels (libraries, project objects).

Sartipi [58] considers component as a group of system

entities in form of a file (to evaluate a design), or module

and sub-system (to evaluate the architecture).

Shereshevsky et al. [60] consider primitive components (at

the lowest level) that exchange the information between

each other and do not contain any other components and

upper-level components that contain those at the level

below them without overlapping. Wei et al. [15] consider

components as autonomous pieces of software code with

well-defined functionality and interfaces, similarly, to the

work by Kanjilal et al. At the end Yu et al. [12] consider

primitive components, that represent the smallest units,

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 245 This work is licensed under Creative Commons Attribution 4.0 International License.

and can be composed into compound components that are

further composed into higher level compound components

so that the layered component structure is formed

(similarly to the work by Shereshevsky etal.). In that

context different artefacts can be considered as

components such as packages, classes, programs, etc.

Considering the previous considerations, we can say that

the term component is used as a higher-level artefact that

can be composed of other components or lower-level

artefacts and that has well-defined functionality.

Component level metrics consider incoming/outgoing

interactions of a component, relations between the entities

within a component, etc.

Component-to-component metrics consider pairs

of components. Some examples of those metrics are the

total number of interfaces between any pair of components

or the number of connectors on the shortest path between a

pair of components.

Package artefacts are considered also from

different authors but they all consider packages as artefacts

that

 40

P
e
rc

e
n
ta

g
e

30
25,61%

20 17,07%

 10 8,54%
 2,44% 1,22%

 0

 Size Coupling Cohesion Complexity Stability Quality

Figure 2: The distribution of the metrics related to the

measured software attributes

sider module as a group of components (component

represents any abstract high-level artefact). Based on

dependency analysis components are grouped into

modules (architectural slicing). In the work by Hwa et al.

[6] module contain classes as well as other modules which

leads to a hierarchical structure very similar to the package

hierarchical structure explained above. Lundvall et al. [7]

and Sarkar al. [8] consider modules as sets of classes like

the work by Hwa et al. Some examples of module level

metrics are the number of classes outside a module that are

commonly shared by the classes inside a module, the

number of classes inside a module that are used by other

classes in other modules, etc. Finally, graph node metrics

consider nodes in the graph that is used to represent a

software system in a very abstract way. Graph node

metrics are for example the degree of a node in a graph,

the importance of a node in a graph, etc.

The distribution of the metrics related to the

measured artefacts is shown in Figure 4. Regarding the

software attributes that are measured the following

categories emerged during the data analysis:

• Size Metrics are related to the number of constituents

elements of the corresponding design units (artefacts) in

the system or to an information theory-based size. For

example, the number of components and modules are

related to the overall structure of the system. The number

of classes is related to single entities, but also it can be

related to the overall structure of the system. Information

theory based size metrics calculate the amount of

information in the system graph using Shannon entropy.

• Coupling Metrics are concerned with the relations

between the design units. Those relations are reflected

through the number of interfaces, the links or paths

between the design units, the extent to which some design

units use other design units, the Shannon entropy of the

information transmission between design units

(information theory-based coupling metrics, see for

example [5]), etc. Coupling mechanisms are also

distinguished in terms of the direction of coupling (import

or export coupling), and through direct and/or indirect

connections between the design units.

• Cohesion Metrics are very similar to the coupling metrics

except that they are bound to the relations between the

constituting parts of the same design unit (artefact).

Functional cohesion introduces external and internal

cohesion, where external cohesion considers the relations

between the elements inside a given design unit and the

elements outside that design unit, while internal cohesion

considers relations between the elements inside a given

design unit. Cohesion is also measured as the extent to

which the elements within one design unit are commonly

used from other design units or as information-based

cohesion that measures the information flow within design

units using the aforementioned Shannon entropy.

• Complexity Metrics measure the degree of connectivity

between elements by considering the relationships within

design units and between them together. They are

concerned with the metrics related to network parameters

(graph-based metrics), information theory-based

complexity, etc. They also measure the hierarchical

structure (degree of composition) in the system.

• Stability Metrics measure how easy it is to make changes

to the elements in a design unit without affecting elements

in other design units in the system.

• Quality Metric is based on the Multi-Attribute Utility

Technique (MUAT) which argues that the quality of a

component is decided by its N attributes such as

complexity and maintainability [30]. This metric considers

composite based software architecture which provides a

way to separately describe control flow and computation.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 246 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 5 shows the distribution of the metrics related to the

measured software attribut

VIII. CONCLUSION

Software understandability affects quality of

overall software engineering. If software under- standability

is favorable, software development process can be

mastered. In this work, we considered so many different

types of metrics. But we want to focus few more metrics on

our further research. Here in chapter 4, we used a rough set

approach to detect the project which is having abnormal

behavior. This type of behavior tells us that the project is

either easily understandable or very much difficult to

understand. The algorithm which is used by us is having

less time complexity than fuzzy based approach. In our

further work we want to include threshold values which

have been calculated based on the standard values of

different attributes, based on that threshold value we will

give outlier ranking.

REFERENCES

[1] Lin, J. C. & Wu, K. C. (2006, September). A

model for measuring software understandability.

In: Sixth IEEE International Conference on

Computer and Information Technology

(CIT'06), pp. 192-192. IEEE.

[2] Melcher, J. & Seese, D. (2008, September).

Towards validating prediction systems for process

understandability: measuring process

understandability. In: 10th International

Symposium on Symbolic and Numeric Algorithms

for Scientific Computing, pp. 564-571. IEEE.

[3] Srivastava, M. Haroon, & A. Bajaj. (2013). Web

document information extraction using class

attribute approach. 4th International Conference

on Computer and Communication Technology

(ICCCT), Allahabad, India, pp. 17-22. DOI:

10.1109/ICCCT.2013.6749596.

[4] Haroon, M., Tripathi, M. M. & Ahmad, F. (2020).

Application of machine learning in forensic

science. In: Critical Concepts, Standards, and

Techniques in Cyber Forensics, pp. 228-239. IGI

Global.

[5] R. Khan, M. Haroon & M. S. Husain. (2015).

Different technique of load balancing in

distributed system: A review paper. Global

Conference on Communication Technologies

(GCCT), Thuckalay, India, pp. 371-375. DOI:

10.1109/GCCT.2015.7342686.

[6] M. Haroon & M. Husain. (2015). Interest

attentive dynamic load balancing in distributed

systems. 2nd International Conference on

Computing for Sustainable Global Development

(INDIA Com), New Delhi, India, pp. 1116-1120.

[7] Fenton, N. E. & Neil, M. (2000, May). Software

metrics: roadmap. In: Proceedings of the

Conference on the Future of Software

Engineering, pp. 357-370.

[8] Harrison, R., Counsell, S. & Nithi, R. (1998,

November). Coupling metrics for object-oriented

design. In: Proceedings Fifth International

Software Metrics Symposium. Metrics (Cat. No.

98TB100262), pp. 150-157. IEEE.

[9] Fenton, N. E. & Neil, M. (1999). Software

metrics: successes, failures and new

directions. Journal of Systems and

Software, 47(2-3), 149-157.

[10] Haroon, M. & Husain, M. (2013). Analysis of a

dynamic load balancing in multiprocessor

system. International Journal of Computer

Science Engineering and Information Technology

Research, 3(1).

[11] Wasim Khan & Mohammad Haroon. (2022). An

unsupervised deep learning ensemble model for

anomaly detection in static attributed social

networks. International Journal of Cognitive

Computing in Engineering, 3, 153-160.

https://doi.org/10.1016/j.ijcce.2022.08.002.

[12] Lin, J. C. & Wu, K. C. (2006, September). A

model for measuring software understandability.

In: Sixth IEEE International Conference on

Computer and Information Technology

(CIT'06), pp. 192-192. IEEE.

[13] Khan, W. (2021). An exhaustive review on state-

of-the-art techniques for anomaly detection on

attributed networks. Turkish Journal of Computer

and Mathematics Education

(TURCOMAT), 12(10), 6707-6722.

[14] Stevanetic, S. & Zdun, U. (2015, April). Software

metrics for measuring the understandability of

architectural structures: a systematic mapping

study. In: Proceedings of the 19th International

Conference on Evaluation and Assessment in

Software Engineering, pp. 1-14.

[15] Husain, Mohammad Salman & Haroon, Dr.

Mohammad. (2020). An enriched information

security framework from various attacks in the

IoT. International Journal of Innovative Research

in Computer Science & Technology, 8(3).

Available at:

SSRN: https://ssrn.com/abstract=3672418

[16] Husain, Mohammad Salman. (2020). A review of

information security from consumer’s perspective

especially in online transactions. International

Journal of Engineering and Management

https://doi.org/10.1016/j.ijcce.2022.08.002
https://ssrn.com/abstract=3672418

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-13, Issue-3 (June 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.3.33

 247 This work is licensed under Creative Commons Attribution 4.0 International License.

Research, 10(4). Available at:

SSRN: https://ssrn.com/abstract=3669577

[17] A.M. Khan, S. Ahmad & M. Haroon. (2015). A

comparative study of trends in security in cloud

computing. Fifth International Conference on

Communication Systems and Network

Technologies, Gwalior, India, pp. 586-590. DOI:

10.1109/CSNT.2015.31.

[18] Khan, W. & Haroon, M. (2022). An efficient

framework for anomaly detection in attributed

social networks. International Journal of

Information Technology, 14(6), 3069-3076.

[19] Khan, W. & Haroon, M. (2022). An unsupervised

deep learning ensemble model for anomaly

detection in static attributed social

networks. International Journal of Cognitive

Computing in Engineering, 3, 153-160.

[20] Husain, M. S. & Haroon, D. M. (2020). An

enriched information security framework from

various attacks in the IoT. International Journal

of Innovative Research in Computer Science &

Technology (IJIRCST).

[21] Husain, M. S. (2020). A review of information

security from consumer’s perspective especially

in online transactions. International Journal of

Engineering and Management Research, 10.

[22] Siddiqui, Z. A. & Haroon, M. (2022). Application

of artificial intelligence and machine learning in

blockchain technology. In: Artificial Intelligence

and Machine Learning for EDGE Computing, pp.

169-185. Academic Press.

[23] Shakeel, N., Haroon, M. & Ahmad, F. (2021). A

study of wsn and analysis of packet drop during

transmission. International Journal of Innovative

Research in Computer Science & Technology.

[24] Khan, W. & Haroon, M. (2022). A pilot study and

survey on methods for anomaly detection in

online social networks. In: Human-Centric Smart

Computing: Proceedings of ICHCSC, pp. 119-

128. Singapore: Springer Nature Singapore.

[25] Haroon, M., Tripathi, M. M., Ahmad, T. &

Afsaruddin. (2022). Improving the healthcare and

public health critical infrastructure by soft

computing: An overview. Pervasive Healthcare:

A Compendium of Critical Factors for Success,

pp. 59-71.

[26] Haroon, M., Tripathi, M. M., Ahmad, T. &

Afsaruddin. (2022). Improving the healthcare and

public health critical infrastructure by soft

computing: An overview. Pervasive Healthcare:

A Compendium of Critical Factors for Success,

pp. 59-71.

[27] Khan, N. & Haroon, M. (2023). A personalized

tour recommender in python using decision

tree. International Journal of Engineering and

Management Research, 13(3), 168-174.

[28] Khan, A. M., Ahmad, S. & Haroon, M. (2015,

April). A comparative study of trends in security

in cloud computing. In: Fifth International

Conference on Communication Systems and

Network Technologies, pp. 586-590. IEEE.

[29] Haroon, M. & Husain, M. (2013). Analysis of a

dynamic load balancing in multiprocessor

system. International Journal of Computer

Science engineering and Information Technology

Research, 3(1).

[30] Haroon, M. & Husain, M. (2013). Different types

of systems model for dynamic load

balancing. IJERT, 2(3).

[31] Scholar, P. G. (2021). Satiating a user-delineated

time constraints while scheduling workflow in

cloud environments.

[32] Fenton, N. & Bieman, J. (2014). Software

metrics: a rigorous and practical approach. CRC

Press.

[33] Fenton, N. (1994). Software measurement: A

necessary scientific basis. IEEE Transactions on

Software Engineering, 20(3), 199-206.

[34] Lessmann, S., Baesens, B., Mues, C. & Pietsch,

S. (2008). Benchmarking classification models

for software defect prediction: A proposed

framework and novel findings. IEEE

Transactions on Software Engineering, 34(4),

485-496.

[35] Dewangan, S., Rao, R. S., Mishra, A. & Gupta,

M. (2021). A novel approach for code smell

detection: an empirical study. IEEE Access, 9,

162869-162883.

[36] Lehman, M. M., Ramil, J. F., Wernick, P. D.,

Perry, D. E. & Turski, W. M. (1997, November).

Metrics and laws of software evolution-the

nineties view. In: Proceedings Fourth

International Software Metrics Symposium, pp.

20-32. IEEE.

[37] Zuse, H. (2013). A framework of software

measurement. Walter de Gruyter.

[38] Lanza, M. & Marinescu, R. (2007). Object-

oriented metrics in practice: using software

metrics to characterize, evaluate, and improve the

design of object-oriented systems. Springer

Science & Business Media.

[39] Mendling, J., Reijers, H. A. & van der Aalst, W.

M. (2010). Seven process modeling guidelines

(7PMG). Information and software

technology, 52(2), 127-136.

https://ssrn.com/abstract=3669577

