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ABSTRACT 
The abstract of this research study outlines the 

objective of validating prediction systems for process 

understandability and software metrics. In this study, we 

focus on assessing the accuracy and reliability of prediction 

systems that aim to provide insights into complex processes 

and software-related metrics. The process of validation 

involves defining clear objectives, gathering relevant data, 

preprocessing the data, performing feature engineering, 

selecting appropriate prediction models, and training and 

validating these models using cross-validation techniques. 

Additionally, we emphasize the importance of interpretability 

and explainability in the prediction process, which enables us 

to gain meaningful insights into the underlying processes. 

Furthermore, a comparative analysis is conducted to 

compare the predictions generated by the system with ground 

truth or expert judgments, thereby ensuring the accuracy 

and reliability of the predictions. The study adopts an 

iterative refinement approach to enhance the performance, 

interpretability, and usability of the prediction system based 

on feedback and validation results. By following this 

comprehensive validation process, we aim to establish reliable 

prediction systems that provide meaningful understandability 

of processes and software metrics. 

Software metrics play a crucial role in assessing the 

quality, maintainability, and performance of software 

systems. However, understanding these metrics and their 

implications can be challenging, especially for non-technical 

stakeholders. This research study focuses on the 

understandability of software metrics and proposes a 

validation framework to assess the effectiveness of prediction 

systems in providing understandable insights. 

 

Keywords-- Software Metrics, Software Understandability, 

Prediction Systems  
 

 

I. INTRODUCTION 
 

Software architectural structures form the 

foundation of complex software systems, defining the 

organization, relationships, and interactions between 

various components[1,2,3]. The understandability of these 

architectural structures is crucial for effective 

communication, collaboration, and maintenance of 

software systems. However, assessing and quantifying the 

understandability of architectural structures can be 

challenging due to their inherent complexity and the 

subjective nature of human comprehensi[4,5]on. 

Software metrics offer a systematic approach to 

evaluate software qualities and characteristics. They 

provide quantitative measures that aid in assessing 

different aspects of software systems, including 

understandability. By employing software metrics 

specifically designed for measuring the understandability 

of architectural structures, software practitioners and 

stakeholders can gain valuable insights into the complexity 

and comprehensibility of the software's architectural 

design[6,7]. 

The purpose of this research study is to identify 

and validate software metrics that effectively measure the 

understandability of architectural structures. These metrics 

will enable software practitioners to objectively evaluate 

and improve the understandability of their architectural 

designs, leading to more maintainable and robust software 

systems[8,9,10]. 

In this study, we will review existing literature 

and research related to software architecture, 

understandability, and software metrics. We will explore 

various architectural elements and their impact on 

understandability, such as modules, components, 

interfaces, and dependencies. By understanding the factors 

that influence architectural understandability, we can 

identify appropriate metrics that capture these 

aspects[11,12,13]. 

The selected metrics may include complexity 

measures, cohesion and coupling metrics, architectural 

layering or modularity indices, and architectural 

documentation coverage. Each metric will provide a 

numerical value representing a specific aspect of 

architectural understandability. These metrics will be 

carefully chosen based on their relevance, reliability, and 

applicability to architectural structures[14,15]. 

To validate the proposed metrics, an empirical 

study will be conducted using real-world software systems. 

These systems will represent a variety of architectural 

styles and complexities. The identified metrics will be 

calculated for each system, and subjective assessments of 

understandability will be collected from software 
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practitioners. These assessments can be gathered through 

expert reviews, surveys, or cognitive 

walkthroughs[16,17,18]. 

Statistical analysis techniques, such as correlation 

coefficients and regression models, will be applied to 

analyze the relationship between the proposed metrics and 

subjective assessments of understandability. This analysis 

will help validate the metrics and determine their 

effectiveness in predicting architectural understandability. 

The validated metrics will serve as practical tools 

for assessing the understandability of architectural 

structures in real-world software development projects. 

They will provide software practitioners and stakeholders 

with objective indicators to identify areas of improvement, 

detect potential design flaws, and guide architectural 

decisions towards more comprehensible and maintainable 

software systems[19.20,21]. 

The study begins by identifying a set of relevant 

software metrics that are commonly used in software 

development and maintenance. These metrics encompass 

various aspects, such as code complexity, code 

duplication, code churn, and software defect 

density[22,23]. 

Next, a prediction system is developed to 

generate predictions based on the selected metrics. The 

system employs machine learning or statistical models to 

analyze historical data and make predictions about future 

software outcomes or characteristics[24,25]. 

To validate the understandability of the prediction 

system, an evaluation framework is established. This 

framework includes both quantitative and qualitative 

measures. Quantitative measures assess the accuracy and 

reliability of the predictions, while qualitative measures 

focus on the comprehensibility and interpretability of the 

generated insights[26,27]. 

The validation process involves collecting a 

diverse dataset that includes software projects with varying 

characteristics and complexity levels. The prediction 

system is trained using this dataset, and its performance is 

evaluated using appropriate metrics such as accuracy, 

precision, recall, and F1-score[28]. 

To assess understandability, user studies, surveys, 

or interviews may be conducted to gather feedback from 

software practitioners and stakeholders. Their perception 

of the generated predictions and insights is analyzed to 

determine the effectiveness of the prediction system in 

conveying understandable information about software 

metrics. The results of the validation process are used to 

refine and improve the prediction system. This iterative 

approach ensures that the system becomes more accurate, 

reliable, and understandable over time[29]. 

By validating prediction systems for software 

metrics understandability, this research study aims to 

provide valuable insights into the development and 

maintenance processes, helping stakeholders make 

informed decisions and take appropriate actions to improve 

software quality and performance. 

 

II. SUCCESSES AND FAILURES OF THE 

SOFTWARE 
 

Successes and failures in software development 

are common occurrences that can have significant impacts 

on projects and organizations. Let's explore some 

examples of both successes and failures in software 

development: 

Successes: Release of a Stable and Functional Product: A 

major success in software development is when a product 

is released that meets or exceeds user expectations. The 

software is stable, performs well, and fulfills its intended 

purpose effectively. 

Timely Delivery: Completing a software project on 

schedule is considered a success. It demonstrates effective 

project management, resource allocation, and adherence to 

timelines. Timely delivery allows organizations to 

capitalize on market opportunities and gain a competitive 

advantage. 

Positive User Feedback: When software receives positive 

feedback from users, it indicates that the product is 

meeting their needs and providing a satisfactory user 

experience. Positive user feedback boosts customer 

satisfaction and loyalty, which can lead to increased 

adoption and revenue generation. 

Effective Bug Fixing and Maintenance: Successfully 

addressing bugs and maintaining software over time 

demonstrates a commitment to quality and ongoing 

improvement. Regular updates, bug fixes, and feature 

enhancements contribute to the longevity and relevance of 

the software[30]. 

Failures: Project Delays and Cost Overruns: One of the 

most common failures in software development is when a 

project exceeds its planned timeline and budget. This can 

occur due to poor project management, inadequate 

resource allocation, scope creep, or unexpected technical 

challenges. 

Poor User Experience: When software fails to provide a 

user-friendly and intuitive experience, it can lead to 

frustration, low adoption rates, and negative reviews. Poor 

user experience often stems from inadequate user research, 

ineffective design, or usability issues. 

Critical Security Breaches: Security vulnerabilities in 

software can lead to significant failures, compromising 

sensitive user data, damaging a company's reputation, and 

exposing organizations to legal and financial 

repercussions. Neglecting proper security measures and 

testing can result in severe consequences. 

Software Defects and Unreliability: If a software product 

contains significant defects or experiences frequent crashes 



International Journal of Engineering and Management Research                e-ISSN: 2250-0758  |  p-ISSN: 2394-6962 

  Volume-13, Issue-3 (June 2023) 

https://ijemr.vandanapublications.com                                                               https://doi.org/10.31033/ijemr.13.3.33  

 

  241 This work is licensed under Creative Commons Attribution 4.0 International License. 

 

and errors, it can undermine user trust and damage the 

reputation of the development team or organization. High 

defect rates indicate a lack of thorough testing, quality 

assurance, or coding standards. 

Lack of Scalability and Adaptability 

When software fails to scale effectively or adapt 

to changing requirements, it can limit its usefulness and 

hinder organizational growth. Inflexible software 

architectures or inadequate planning for future needs can 

contribute to this failure[31]. 

 

III. LIMITATIONS OF METRICS FOR 

PREDICTING SOFTWARE QUALITY 

 

While metrics play a significant role in assessing 

and predicting software quality, they also have certain 

limitations that need to be considered. Some of the 

limitations of using metrics for predicting software quality 

are: 

1. Limited Coverage: Metrics may not capture all 

aspects of software quality. They often focus on specific 

measurable characteristics, such as code complexity, code 

coverage, or defect density, while neglecting other 

important qualitative factors like user experience, 

maintainability, and scalability. This limited coverage may 

result in an incomplete understanding of overall software 

quality[32]. 

2. Lack of Contextual Information: Metrics 

provide quantitative data but may not provide the 

necessary contextual information to interpret the results 

accurately. For example, a high defect density metric may 

indicate poor quality, but without understanding the 

complexity of the software or the severity of the defects, it 

can be challenging to determine the actual impact on 

quality. 

3. Inherent Complexity: Software development is a 

complex process, and software quality is influenced by 

multiple interrelated factors. Metrics often simplify this 

complexity by quantifying specific attributes, but they may 

fail to capture the intricate dependencies and interactions 

among different software components. Consequently, 

relying solely on metrics may oversimplify the assessment 

of software quality. 

4. Lack of Standardization: There is often a lack 

of standardized and universally accepted metrics for 

measuring software quality. Different organizations or 

domains may adopt their own set of metrics, leading to 

inconsistencies and difficulties in comparing and 

benchmarking software quality across different projects or 

contexts. This lack of standardization hinders the 

reliability and generalizability of metrics-based 

predictions. 

5. Subjectivity and Interpretation: The 

interpretation of metrics and their thresholds can be 

subjective and dependent on individual or organizational 

perspectives. Different stakeholders may have varying 

interpretations of what constitutes good or poor quality 

based on the same metrics. This subjectivity can introduce 

bias and lead to inconsistent predictions of software 

quality. 

6. Evolving Nature of Software: Software systems 

are dynamic and constantly evolving. Metrics-based 

predictions are often based on historical data and 

assumptions that may not hold true in the future. As 

software changes, new features are added, or technologies 

evolve, the validity and relevance of metrics may diminish, 

reducing their predictive power. 

7. Human Factors: Metrics tend to focus on 

technical aspects of software quality but may not 

adequately consider human factors, such as user needs, 

expectations, and satisfaction. Software quality is 

ultimately determined by how well it meets user 

requirements and provides a positive user experience, 

which metrics may not fully capture. 

8. To address these limitations, it is essential to 

consider metrics as just one piece of the puzzle in 

assessing software quality. Combining metrics with other 

qualitative assessments, user feedback, and expert 

judgment can provide a more comprehensive 

understanding of software quality and improve the 

accuracy of predictions. Additionally, regular evaluation 

and refinement of metrics frameworks can help overcome 

some limitations by adapting to changing software 

development practices and incorporating new dimensions 

of quality[33]. 
 

IV. FACTORS AFFECTING 

SOFTWARE UNDERSTANDABILITY[1] 

 

Software understandability is influenced by 

various factors that can impact how easily developers and 

other stakeholders comprehend and work with software 

systems. 

We defined the membership function in fuzzy 

mathematics for different factors Software is maintained 

through the integrated use of source code and documents. 

Source code readability and quality of documentation 

should be taken into account while measuring the software 

maintainability. Comments Ratio (CR) is used to judge the 

Readability of Source Code (RSC). Quality of 

Documentation (QOD) is judged using Fog index[34]. 

understandability of software documentation we compiled 

is composed of source code (RSC) and documents (QOD) 

with membership function as follows: 

(1) Membership functions for documents judged using Fog 

index: 
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Membership functions for RSC judged using CR 

 

 
 

 
 

V. FRAMEWORK FOR EVALUATING 

MODELING TECHNIQUE 

UNDERSTANDING 

 

Based on work by Mayer [5], Gemino and Wand 

proposed a framework for evaluating model understanding 

for arbitrary modeling techniques [3]. They differentiate 

between model creation (for representing parts of the real 

world) and model reading (creating a mental representation 

from a model) [3, p. 80]. In this paper, we deal with the 

second point. For this purpose, they suggest a model for 

knowledge construction and learning from models adapted 

from Mayer: Content, presentation method and the model 

viewer characteristics influence the knowledge 

construction and consequently the learning outcome. This 

cognitive process is not directly observable, but has to be 

observed indirectly through learning performance tasks. 

Here, Gemino and Wand list  comprehension and problem-

solving tasks. The former include questions regarding 

attributes of and relationships between model items—

while the latter include questions going beyond the 

information given originally in the model. [3, pp. 82–83] 

For our problem (process understandability), 

comprehension tasks seem to be obvious. 

 

VI. ASPECTS OF PROCESS 

UNDERSTANDABILITY 
 

As we already discussed in Section 4, it is 

important to cover the different aspects of process 

understandability to fulfill the content validity requirement 

for metrics. In this paper, we concentrate on the aspects 

order, concurrency, exclusiveness and repetition. Doing so, 

we do not deny the possible existence of other aspects. 

Unlike in [7], we will give detailed definitions of the 

questions of the different aspects. We start with the 

definition of the term ―activity period‖ which is later used 

in our questions[35,36]. 

Activity Period  

An activity period of task t is the period between 

a point in time when t becomes executable and the next 

point in time when the actual execution of t terminates. 

Now, we c an define relations for the four aspects of 

process understandability[37]. 

Order 

For the questions about task order, 

the relations   

with the following meanings are used. 

There is no process instance for 

which an activity period of task t1 ends before an activity 

period of task t2 starts[38]. 

,There is a process instance for which 

an activity period of task t1 ends before an activity period 

of task t2 starts.—But there also exists a process 

instance for which this does not hold. 

 , For each process instance, an activity 

period of task t1 ends before an activity period of task t2 

starts. 

Concurrency 

For the questions about task concurrency, the  

relations  

 
With the following meanings are 

used.  There is no process instance for 

which the activity periods of tasks t1 and t2 overlap.(t1; t2) 

2 c9 ,There is a process instance for which the activity 

periods of tasks t1 and t2 overlap at least once (Several 

executions of t1 and t2 per process instance are 

possible!).—But there also exists a process instance for 

which this does not hold[39]. 

 ,For each process instance, the activity 

periods of tasks t1 and t2 overlap at least once. 

Object-Oriented Metrics 

When it comes to object-oriented programming, 

several metrics can be used to assess the quality and 

maintainability of code. These metrics specifically focus 

on aspects related to object-oriented design principles and 

concepts. Here are some commonly used metrics for 

object-oriented code: 

1. Class Coupling: Class Coupling measures the degree of 

interdependence between classes in a codebase. It counts 

the number of unique classes that a particular class relies 
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on or interacts with. High coupling indicates tight 

dependencies, which can make code more difficult to 

understand and maintain[40]. 

2. Cohesion: Cohesion measures how closely the methods 

and attributes within a class are related to each other. High 

cohesion suggests that the methods and attributes in a class 

are closely related to its purpose and responsibilities, 

leading to better code understandability and 

maintainability. 

3. Depth of Inheritance Tree (DIT): DIT measures the 

number of inheritance levels in a class hierarchy. It 

indicates the depth of the inheritance tree and the potential 

complexity involved in understanding the relationships 

between classes. High DIT values can imply increase 

complexity and reduced understandability. 

4. Number of Children (NOC): NOC measures the 

number of immediate subclasses that inherit from a 

particular class. Higher NOC values suggest a larger 

number of derived classes, which can indicate a complex 

class hierarchy and potentially affect code 

understandability and maintainability. 

5. Lack of Cohesion in Methods (LCOM): LCOM 

measures the lack of cohesion within a class. It quantifies 

the number of pairs of methods in a class that do not share 

common attributes or methods. Higher LCOM values 

suggest lower cohesion and can indicate potential design 

issues that affect understandability and maintainability. 

6. Weighted Methods per Class (WMC): WMC 

measures the number of methods within a class, giving 

each method a weight based on its complexity (e.g., 

cyclomatic complexity). It provides an indication of the 

complexity and potential understandability challenges of a 

class. 

7. Response for a Class (RFC): RFC measures the 

number of methods that can be invoked in response to a 

message or request to a class, including its own methods 

and those inherited from super classes. Higher RFC values 

can indicate increased complexity and potentially impact 

code understandability. 

8. Lack of Cohesion in Hierarchies (LCH): LCH 

measures the lack of cohesion within an inheritance 

hierarchy. It quantifies the number of pairs of methods in 

different classes within the hierarchy that do not share 

common attributes or methods. Higher LCH values 

indicate lower cohesion and can suggest potential issues 

with the hierarchy's design and understandability. 

These metrics provide insights into the design and 

complexity of object-oriented code, highlighting areas that 

may need attention to improve understandability and 

maintainability. However, it's important to remember that 

these metrics should be used in conjunction with other 

qualitative assessments, code reviews, and the specific 

context of the project to make informed decisions about 

code quality and design. 

VII. DATA ANALYSIS 
 

To perform a data analysis of software 

understandability using software metrics, you can follow 

these general steps: 

1. Define the Software Metrics: Identify the software 

metrics that are relevant to understanding the code's 

complexity, maintainability, and readability. This can 

include metrics such as Cyclomatic Complexity, Lines of 

Code (LOC), Coupling Between Objects (CBO), Lack of 

Cohesion in Methods (LCOM), or any other metrics that 

you find suitable. 

2. Gather Data: Collect the required data for the selected 

software metrics. This data can be obtained from the 

source code repository, version control system, or static 

code analysis tools. Ensure that you have the necessary 

information, such as the number of classes, methods, lines 

of code, and any other metrics you plan to analyze. 

3. Calculate Metrics: Use appropriate formulas or 

existing tools to calculate the software metrics for each 

code component (class, method, etc.) in your dataset. 

Apply the formulas to the relevant data points and 

calculate the corresponding metric values. 

4. Establish a Baseline: Determine a baseline or reference 

point for software understandability. This can be done by 

analyzing a representative sample of the codebase or by 

using expert judgment. This baseline will serve as a 

benchmark for comparison and evaluation. 

5. Analyze the Data: Perform data analysis techniques to 

gain insights into software understandability. This can 

include statistical analysis, data visualization, correlation 

analysis, or any other suitable techniques based on the 

nature of the metrics and your research questions. Look for 

patterns, trends, and relationships among the metrics to 

identify factors that may impact understandability. 

6. Interpret the Results: Interpret the results of the data 

analysis to draw conclusions about software 

understandability. Identify code components that deviate 

significantly from the baseline or exhibit patterns 

indicating low understandability. Investigate the potential 

causes of these deviations, such as high complexity, 

excessive coupling, or poor code structure. 

7. Take Action: Based on the findings, determine 

appropriate actions to improve software understandability. 

This can involve refactoring code, improving 

documentation, addressing high complexity areas, or 

introducing coding guidelines and best practices. 

8. Monitor and Iterate: Continuously monitor the 

software metrics and repeat the analysis periodically to 

track the progress of understandability improvements over 

time. This iterative process helps in identifying areas that 

still require attention and evaluating the effectiveness of 

the actions taken. 
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It's important to note that software 

understandability is a multidimensional aspect influenced 

by various factors. Therefore, a comprehensive analysis 

may involve considering multiple software metrics 

simultaneously and integrating qualitative assessments 

from developers or code reviewers to get a holistic view of 

understandability. 

Software Understandability Based on Fuzzy Matrix  

Software understandability is a subjective 

measure that depends on multiple factors and cannot be 

precisely quantified. However, fuzzy logic can be applied 

to create a fuzzy matrix that assesses the understandability 

of software based on linguistic variables. The fuzzy matrix 

allows for representing and reasoning about imprecise and 

uncertain information. Here's a general approach to 

constructing a fuzzy matrix for software understandability: 

1. Identify linguistic variables: Determine the linguistic 

variables that contribute to software understandability. 

These variables can include code readability, complexity, 

modularity, naming conventions, documentation, and so 

on. Each linguistic variable should have a set of linguistic 

terms or labels that represent different levels or degrees. 

2. Define membership functions: For each linguistic 

term, define membership functions that describe the degree 

of membership or relevance to that term. Membership 

functions can be triangular, trapezoidal, Gaussian, or any 

other suitable shape that represents the fuzzy membership. 

3. Determine fuzzy rules: Establish a set of fuzzy rules 

that map the input linguistic variables to the output 

linguistic variable, which represents the understandability 

level. These rules capture expert knowledge or heuristics 

about how different linguistic variables influence software 

understandability. For example, a rule might state that if 

the code readability is "high" and the modularity is 

"moderate," then the understandability is "good." 

4. Evaluate linguistic variables: Assess the linguistic 

variables based on their corresponding membership 

functions. Evaluate the linguistic terms for each variable to 

determine the degree to which they apply to the software 

being analyzed. This evaluation can involve linguistic 

assessments by experts or automated analysis techniques. 

5. Apply fuzzy inference: Utilize fuzzy inference 

methods, such as Mamdani or Sugano, to compute the 

output fuzzy set for understandability based on the fuzzy 

rules and the evaluated linguistic variables. Fuzzy 

inference combines the fuzzy rules and their degrees of 

applicability to derive a fuzzy output. 

6. Defuzzification: Convert the fuzzy output into a crisp 

value using defuzzification techniques. Common methods 

include centroid, mean of maxima, and weighted average. 

7. Interpretation: Interpret the crisp value obtained from 

defuzzification as a numerical representation of the 

software's understandability level. This value can be 

mapped to linguistic terms, such as "low," "medium," or 

"high," to provide a more human-readable understanding 

of the software's understandability. 

It's important to note that constructing a fuzzy 

matrix for software understandability requires domain 

expertise and knowledge. The fuzzy matrix should be 

continuously refined and validated based on real-world 

data and expert feedback to ensure its accuracy and 

effectiveness in capturing software understandability. 

Measured Software Artefacts and Attributes (RQ1) 

Different authors claim the importance of both, 

metrics that measure individual artefacts (components) in 

the system and metrics that measure the whole 

architectural  
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Figure 1: The distribution of the studies related to the 

approach type 

 

etc.). For example, the metrics like the total number of 

components or links in the system’s component view 

represent the metrics related to the architecture artefact. 

The metrics related to the component artefact are defined 

from different authors using the term component as a high-

level artefact in different contexts. Kanjilal et al. [32] 

considers component as a system element that can be 

composed with other components, offers a predefined 

service and is able to communicate with other components. 

Misic [47] considers component as a set of objects at 

different abstraction levels (libraries, project objects). 

Sartipi [58] considers component as a group of system 

entities in form of a file (to evaluate a design), or module 

and sub-system (to evaluate the architecture). 

Shereshevsky et al. [60] consider primitive components (at 

the lowest level) that exchange the information between 

each other and do not contain any other components and 

upper-level components that contain those at the level 

below them without overlapping. Wei et al. [15] consider 

components as autonomous pieces of software code with 

well-defined functionality and interfaces, similarly, to the 

work by Kanjilal et al. At the end Yu et al. [12] consider 

primitive components, that represent the smallest units, 
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and can be composed into compound components that are 

further composed into higher level compound components 

so that the layered component structure is formed 

(similarly to the work by Shereshevsky etal.). In that 

context different artefacts can be considered as 

components such as packages, classes, programs, etc. 

Considering the previous considerations, we can say that 

the term component is used as a higher-level artefact that 

can be composed of other components or lower-level 

artefacts and that has well-defined functionality. 

Component level metrics consider incoming/outgoing 

interactions of a component, relations between the entities 

within a component, etc. 

Component-to-component metrics consider pairs 

of components. Some examples of those metrics are the 

total number of interfaces between any pair of components 

or the number of connectors on the shortest path between a 

pair of components. 

Package artefacts are considered also from 

different authors but they all consider packages as artefacts 

that  
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Figure 2: The distribution of the metrics related to the 

measured software attributes 

 

sider module as a group of components (component 

represents any abstract high-level artefact). Based on 

dependency analysis components are grouped into 

modules (architectural slicing). In the work by Hwa et al. 

[6] module contain classes as well as other modules which 

leads to a hierarchical structure very similar to the package 

hierarchical structure explained above. Lundvall et al. [7] 

and Sarkar al. [8] consider modules as sets of classes like 

the work by Hwa et al. Some examples of module level 

metrics are the number of classes outside a module that are 

commonly shared by the classes inside a module, the 

number of classes inside a module that are used by other 

classes in other modules, etc. Finally, graph node metrics 

consider nodes in the graph that is used to represent a 

software system in a very abstract way. Graph node 

metrics are for example the degree of a node in a graph, 

the importance of a node in a graph, etc. 

The distribution of the metrics related to the 

measured artefacts is shown in Figure 4. Regarding the 

software attributes that are measured the following 

categories emerged during the data analysis: 

• Size Metrics are related to the number of constituents 

elements of the corresponding design units (artefacts) in 

the system or to an information theory-based size. For 

example, the number of components and modules are 

related to the overall structure of the system. The number 

of classes is related to single entities, but also it can be 

related to the overall structure of the system. Information 

theory based size metrics calculate the amount of 

information in the system graph using Shannon entropy. 

• Coupling Metrics are concerned with the relations 

between the design units. Those relations are reflected 

through the number of interfaces, the links or paths 

between the design units, the extent to which some design 

units use other design units, the Shannon entropy of the 

information transmission between design units 

(information theory-based coupling metrics, see for 

example [5]), etc. Coupling mechanisms are also 

distinguished in terms of the direction of coupling (import 

or export coupling), and through direct and/or indirect 

connections between the design units. 

• Cohesion Metrics are very similar to the coupling metrics 

except that they are bound to the relations between the 

constituting parts of the same design unit (artefact). 

Functional cohesion introduces external and internal 

cohesion, where external cohesion considers the relations 

between the elements inside a given design unit and the 

elements outside that design unit, while internal cohesion 

considers relations between the elements inside a given 

design unit. Cohesion is also measured as the extent to 

which the elements within one design unit are commonly 

used from other design units or as information-based 

cohesion that measures the information flow within design 

units using the aforementioned Shannon entropy. 

• Complexity Metrics measure the degree of connectivity 

between elements by considering the relationships within 

design units and between them together. They are 

concerned with the metrics related to network parameters 

(graph-based metrics), information theory-based 

complexity, etc. They also measure the hierarchical 

structure (degree of composition) in the system. 

• Stability Metrics measure how easy it is to make changes 

to the elements in a design unit without affecting elements 

in other design units in the system. 

• Quality Metric is based on the Multi-Attribute Utility 

Technique (MUAT) which argues that the quality of a 

component is decided by its N attributes such as 

complexity and maintainability [30]. This metric considers 

composite based software architecture which provides a 

way to separately describe control flow and computation. 
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Figure 5 shows the distribution of the metrics related to the 

measured software attribut 

 

VIII. CONCLUSION 
 

Software understandability affects quality of 

overall software engineering. If software under- standability 

is favorable, software development process can be 

mastered. In this work, we considered so many different 

types of metrics. But we want to focus few more metrics on 

our further research. Here in chapter 4, we used a rough set 

approach to detect the project which is having abnormal 

behavior. This type of behavior tells us that the project is 

either easily understandable or very much difficult to 

understand. The algorithm which is used by us is having 

less time complexity than fuzzy based approach. In our 

further work we want to include threshold values which 

have been calculated based on the standard values of 

different attributes, based on that threshold value we will 

give outlier ranking. 
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