Contra C*-Continuity in Topological Spaces

P.Chandramoorthi

Lecturer(Sr. Gr)/Mathematics, Nachimuthu Polytechnic College, Pollachi 642003, INDIA

Corresponding Author: chandruvp@gmail.com

ABSTRACT

In this paper, we introduce the notions of contra C*continuity and contra C(S)-continuity in topological spaces and study the relations of contra C*-continuity with various generalized contra continuity maps.

Keywords-- Contra C* -Continuity, C* -Continuity, C(S)-Continuity, Contra C(S)-Continuity

I. INTRODUCTION AND PRELIMINARIES

Throughout this paper, X and Y denote topological spaces (X, τ) and (Y, σ) respectively. For a subset A of X, the closure, the interior and the complement of A are denoted by cl(A), int(A) and A^{C} respectively.

Definition 1.1. A subset S of X is called

- a) an A-set if $S=G \cap F$ where G is open and F is regular closed in X,
- b) a t-set if int(S)=int(cl(S)),
- c) a B-set if $S = G \cap F$ where G is open and F is a t-set in X,
- d) an α^* -set if int(S)=int(cl(int(S))),
- e) a C-set (due to Sundaram) if $S = G \cap F$ where G is g-open and F is a t-set in X,
- f) a C-set (due to Hatir, Noiri, and Yuksel) if S = G $\cap F$ where G is open and F is an α^* -set in X.

Proposition 1.2: Every C(S) -set in X is a C*-set in X. **Proof**: Let S be a C(S) -set in X. Then $S = A \cap B$ Where A is g-open and B is a t-set in X.

Proposition 1.3: Every C-set in X is a C*-set in X.

Proof : Let S be a C-set set in X. Then $S = A \cap B$ Where A is open and B is an α^* -set in X. Since every open set in g-open, we see that S is a C*-set in X.

II. CONTRA C*-CONTINUITY

Definition 2.1 : A map $f : X \to Y$ is said to be contra C*continuous if $f^{1}(F)$ is a C*-set in X for every closed set F in Y. **Definition 2.2** : A map $f : X \rightarrow Y$ is said to be contra C(S) -continuous if $f^{1}(F)$ is a C(S)-set in X for every closed set F in Y.

Definition 2.3 [4] : A map $f : X \to Y$ is said to be contra gp- continuous if $f^{1}(F)$ is a gp- open in X for every closed set F in Y.

Proposition 2.4 : Every contra C(S)-continuous map is contra C*-continuous

Proof . Let $f:X \to Y$ be a contra C(S) continuous map. Since every C(S)-set in X is a

C*-set in X, f is contra C*-continuous.

Example 2.5 : Let $X = \{a, b, c\}$ $Y = \{x,y\}$, $\tau = \{\phi, \{a,b\}, X\}$ and $\sigma = \{\phi, \{x\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = f(c) = y. Here, $f^{-1}(\{y\}) = \{b,c\}$ is a C*-set but not a C(S)-set in X. Thus, f is contra C*-continuous but not

contra C(S)-continuous.

Remark 2.6 : (a) contra C^* -continuity and C^* - continuity are independent.

(b) contra C(S) -continuity and C(S) - continuity are independent

(c) contra C*-continuity and contra gp -continuity are independent

(d) contra C(S)-continuity and contra gp-continuity and

(e) contragp -continuity and gp - continuity

are independent as seen from the following examples.

Example 2.7 :Let $X = Y = \{a, b, c\}$ $\tau = \{\phi, \{a\}, \{a,b\}, X\}$ and $\sigma = \{\phi, \{x\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c. Here $f^{-1}(\{a\}) = b$ is a C*-set and a C(S)-set in (X, τ) . Thus f is C*-continuous and C(S)-continuous but is neither contra C*-continuous nor contra C(S)-continuous .

Example 2.8 : Let (X, τ) be as in example 1.7. Let $Y = \{x,y\}$ and $\sigma = \{\phi, \{x\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = f(c) = x and f(b) = y. Then f is contra C*-continuous and contra C(S)-continuous but is neither C*-continuous nor

$C(S)\mbox{-}continuous$.

Example 2.9 : Let (X, τ) be as in example 1.7. Define f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c and f(c) = b. Then f is gp-continuous and since $f^{-1}(\{b,c\}) = \{b, c\}$ is not gp-open in (X, τ) , f is not contra gp-continuous. Also, define www.ijemr.net

 $g: (X, \tau) \rightarrow (X, \tau)$ by g(a) = c, g(b) = b g(c) = a. Then g is contra gp-continuous and but not gp-continuous.

Example 2.10 : Let (X, τ) be as in example 1.7. Let $Y = \{x,y\}$ and $\sigma = \{\phi, \{x\}, Y\}$. Define f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = f(c) = y and f(b) = x. Then f is contra gpcontinuous but is neither contra C*-continuous nor contra C(S)-continuous, for $f^{-1}(\{y\}) = \{a,c\}$ is a gp-open but is neither a C*-set nor a C(S)-set in (X, τ) .

Example 2.11 : Let $f : (X, \tau) \rightarrow (X, \tau)$ be as defined in example 1.9. Then f is contra C*-continuous and contra C(S)-continuous but not contra gp-continuous.

Example 2.12 : A map $f : X \rightarrow Y$ is contra g-continuous (resp, contra rg-continuous, contra α g-continuous, contra α g-continuous) if and only if $f^{-1}(F)$ is g-open (resp,

rg-open, αg open, $g\alpha^{**}$ -open) in X for every closed set F in Y.

Proof. The proof follows from the result : $f^{1}(Y-A) = X - f^{1}(A)$ for any subset A of Y.

Proposition 2.13 : Let $X \rightarrow Y$ be contra g-continuous. Then

- a) f is contra C*-continuous
- b) f is contra C(S)-continuous
- c) f is contra α g-continuous
- d) f is contra gp-continuous

Proof. Since every g-open set in X is a C*-set, a C(S)-set α g-open and gp-open in X, the proof follows easily.

However, the converses need not be true as seen from the following examples.

Example 2.14 : Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\} X\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by

f(a) = a, f(b) = c and f(c) = b. Then f is contra C*-continuous and

contra C(S)- continuous but not contra g-continuous.

Example 2.15 : Let $X = \{a, b, c\}$ $Y = \{x, y\}$, $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{x\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = f(c) = y and f(b) = x. Here $f^{-1}(\{y\}) = \{a, c\}$ is αg open, gp-open but not g-open in (X, τ) . Thus f is contra αg -continuous and

contra gp-continuous but not contra g-continuous.

Proposition 2.16 : A contra α g-continuous map is contra gp-continuous .

Proof. Since every αg -open set is gp-open, the proof follows.

However, the converse need not be true as seen from the following examples;

Example 2.17 :Let $X = \{\phi, a, b\}, X \} Y = \{x, y\}, \tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{x\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = f(c)=y. Here, $f^{-1}(\{y\}) = \{b, c\}$ is gp-open but not αg -open in : (X, τ) . Thus f is contra gp-continuous but not

contra ag-continuous.

Remark 2.18 : Contra α g-continuous is independent of contra C*-continuity and contra C(S)-continuity as seen from the following examples ;

Example 2.19 : Let $X = \{a, b, c\}$ $Y = \{x, y\}$, $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{x\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = f(c) = y and f(b) = x. Then f is contra α g-continuous, but is neither contra C(S)-continuous nor contra C*-continuous. Also define $g : (X, \tau) \rightarrow (X, \tau)$ by g(a) = a, g(b) = c and g(c) = b. Here $g^{-1}(\{c\}) = \{b\}$ and $g^{-1}(\{b, c\}) = \{b, c\}$ are both C*-sets and C(S)-sets but $\{b, c\}$ is not α g open (X, τ) . Thus g is contra C*-continuous and contra C(S)-continuous but not contra α g-continuous.

REFERENCES

[1] Abd EI-Monsef, M.E., Ei-Deeb, S.N. and Mahmoud, R.A., β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.

[2] Andrijevic, D., Some properties of the topology of α -sets, Mat. Vesnik, 36(1984), 1-10.

[3] Andrijevic, D., Semi-preopen sets, Mat. Vesnik, 38 (1986) 24-32.

[4] Arockiarani, I., Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, (1997)

[5] Arockiarani, I. and Balachandran, K., On regular generalized continuous maps in topological spaces, kyungpook Math. J., 37(1997), 305-317

[6] Arockiarani, I. and Balachandran, K., and Dontchev, J., Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi univ. Ser. A, Math., 20(1999), 93-104.

[7] Baker, C.W., A note on the decomposition of continuity, Acta Math. Hungar., 75(1997), 245-251.