
International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 7 This work is licensed under Creative Commons Attribution 4.0 International License.

Prediction of Loan Approval in Banks using Machine Learning

Approach

Viswanatha V1, Ramachandra A.C2, Vishwas K N3 and Adithya G4
1Assistant Professor, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology,

Bangalore, INDIA
2Professor, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology,

Bangalore, INDIA
3Student, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore,

INDIA
4Student, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore,

INDIA

3Corresponding Author: viswas779@gmail.com

Received: 01-07-2023 Revised: 16-07-2023 Accepted: 30-07-2023

ABSTRACT
Due to significant technology advancements,

people's needs have expanded. As a result, there have been

more requests for loan approval in the banking sector. A

few qualities, taken for consideration, when choosing a

candidate for loan approval in order to, determine loan's

status. Banks face a major challenge; when it, comes to

assessing loan applications and lowering the risks

associated with potential borrower defaults. Since they

must thoroughly evaluate each borrower's eligibility for a

loan, banks find this process to be particularly challenging.

This research proposes combining machine learning (ML)

models and ensemble learning approaches to find the

probability of accepting individual loan requests. This

tactic can increase the accuracy with which qualified

candidates are selected from a pool of applicants. As a

result, this method can be used to address the problems

with loan approval processes outlined above. Both the loan

applicants and the bank employees profit from the

strategy's dramatic reduction in sanctioning time. Because

of the banking industry's expansion, more people were

applying to loans at banks. In order to predict the accuracy

of loan approval status for applied person, we used four

different algorithms namely Random Forest, Naive Bayes,

Decision Tree, and KNN. By using these, we obtained better

accuracy of 83.73% with Naïve Bayes algorithm as best

one.

Keywords-- Safe Customers, Bank Loans, Trained

Dataset, Random Forests, KNN, Decision Tree, Naive

Bayes

I. INTRODUCTION

Many banks' primary line of business is loan

distribution. Loans given to consumers account for the

majority of a bank's revenue. Interest is charged by these

banks on loans given to customers. Banks' handled. It

merely has the values x and y as independent and

dependent variables. Data primary goal is to invest their

funds in dependable clients. Many banks have been

processing loans so far following a backward process of

vetting and verification. However, as of right now, no

bank can guarantee whether the customer who is selected

for a loan application is secure or not. So, in order, to

avoid this circumstance, we implemented the Loan

Prediction System Using Python, a system for the

approval of bank loans. The Loan Prediction System is a

piece of software that determines if or not the specific

customer is qualified to receive a loan. This technique

examines number of variables, including the customer's

marital status, income, spending, and other elements. For

wide numbers of trained data set clients, this

method/technique is used. These elements are, taken to

consideration when creating the necessary model. In

order for obtaining the desired outcome, this model is

applied for the test data set. The result will be presented

as either yes or no. If the answer is yes, then the

customer is capable of repaying the loan; if the answer is

no, then the consumer is not capable of repaying the

loan. We can grant loans to clients based on these

criteria. Machine learning is the study of how the

systems of computers are used and developed to learn

and adapt without explicit instructions by analysing and

inferring patterns in data using algorithms and statistical

models. It is so important in the twenty-first century that

it was used practically everywhere, from Such a function

can’t be fitted with a straight line without incurring

significant mistakes. Additionally, the datasets those with

greater than two dimensions scientists developed

polynomial regression, logistic regression, and even

linear regression with having more variables to address

these problems. As the accuracy sharply improved, more

individuals grew interested in it and started working on

it. The new era of data science began with the first use of

the term "Big data" in 2005. Many ideas can now be

fulfilled, including decision tree regression.

commonplace things like a search engine and an email

filter to more challenging issues like predicting

consumer behaviour or our topic, predicting house

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 8 This work is licensed under Creative Commons Attribution 4.0 International License.

prices. Although the concept of regression, or the act of

building a function to describe the dataset points, was

not developed until around 1800, machine learning (ML)

algorithms didn’t appear until 1952. In accordance for

evaluate, effectiveness of a function in fitting a large

number of points of data, Legendre created and

published "the method of least square" in 1805. The first

effective cost function with a mathematical foundation is

developed. Over the following century, mathematicians

and scientists like Gauss and Markov would extend this

concept and apply it to produce formulas. The regression

was an extremely challenging process, though, as there

were no computers (or even calculators) accessible at the

time. Everything began to alter in the 1950s with the

introduction of the machine learning idea. To execute

linear regression, a unique type of calculator was

developed. as implied by the name. Utilizing a linear

function to make predictions based on supplied data

points is known as linear regression. By reducing the

cost function of linear regression (squared error), a best

fit linear function can be discovered for practically any

dataset. However, when it first debuted, it didn't appear

to be that helpful. Numerous problems are still open.

First, many datasets cannot be accurately represented by

a straight line. For instance, a quadratic connection is

one in which y gets highly high or low depending on a

value of x, but extremely low depending on value of x.

In most cases, loan prediction entails the lender

reviewing the applicant's background data for the

determination of whether the bank should approve the

loan. The elements that, determine if a loan will be

granted include aspects like credit history, loan amount,

lifestyle, career, and assets. It is more probable that your

loan will be approved if previous borrowers with criteria

similar to yours have made on-time payments. This

reliance on prior knowledge and comparisons with other

applicants can be taken advantage of by machine

learning (ML) algorithms, which can, then be used for

create a data science issue to forecast the loan status of

new applicant using the set of analogous criteria.

II. LITERATURE REVIEW

In their study, Rajiv Kumar and Vinod Jain

constructed the logistic tree, decision tree, random forest

algorithms using the Python computer language [1]. The

decision tree (DT) technique was founded to be the most

efficient after comparing the correction of three distinct;

machine learning (ML) algorithms in terms of prediction

accuracy. However, this can be fixed by correctly

classifying the data and completing any gaps that were

left out. Pidikiti Supriya and Myneedi Pavani claim in

their study work [2] that they pre-processed the data to

remove any anomalies in dataset. They have also created

list of Correlating Characteristics that had, found for

raise, probability of debt payback. The set of data was

classified as training and testing operations using the

80:20 rule. The Python platform's complot and boxplot

utilities are used to, find the correlation between the

attributes. They haven't employed any other method to

compare accuracy results, besides a decision tree. This

can be prevented by training datasets using multiple

techniques and assessing their efficacy.

In their research study, Kumar Arun and Garg

Ishan studied six distinct machine learning (ML)

techniques, having, support vector machines, and neural

networks, random forests, decision trees, linear models,

and Adaboost [3]. The four sections of this, study were

as follows. Data gathering (i), model evaluation (ii),

machine learning (ML) on the collected data (iii), system

training (iv), and system testing using the most useful

model (v) are the steps involved. The R programming

language was employed in the creation of this system. It

was challenging for others to comprehend and compare

the results because they didn't visualize the data

outcomes using graphs or other matrix representations,

but this problem might be resolved by doing so. Authors

from [4]. At first, the data was cleaned up. The next steps

were exploratory data analysis and feature engineering.

Graphs had been employed for visualization. For loan

prediction, four models are used. Support Vector

Machines, Decision Tree (DT) algorithm, Naive Bayes

and the Logistic Regression, three four methods. They

thoroughly considered the benefits and limitations and

came to the confident conclusion that Naive Bayes(NB)

model is quite capable of delivering results that are

superior to those of other models.

The sets of data, according to the authors in [5],

was acquired from the industry of banking. Weka can

read the data set, because , it is in the ARFF (Attribute

Relation File Format) format. To address an issue of

accepting or declining loan requests as like as short-term

loan prediction, they employed exploratory data testing.

They conducted the exploratory data testing, to their

study. Decision Tree(DT), and Random Forest(RF) are

two machine learning categorization models thaose are

utilised for prediction. They used the random forest

method in their analysis.

III. DESIGN AND METHODOLOGY

Import the necessary libraries, such as scikit-

learn, pandas, and numpy, to process data and create a

prediction model.Fill a pandas DataFrame with the loan

data.Create two subsets from the preprocessed data: a

training set and a testing set. The predictive model will

be trained using the training set, and its performance will

be assessed using the testing set.Select a suitable

machine learning algorithm, such as random forests,

decision trees, or logistic regression, to predict if a loan

will be approved. Create an instance of the selected

model and adjust any required hyperparameters. Using

the fit() function, adjust the model to the training set of

data.

In order to produce predictions, the model will

discover patterns and relationships in the training data.

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 9 This work is licensed under Creative Commons Attribution 4.0 International License.

Depending on its characteristics, the model will

categorize each loan application as authorized or denied.

Compare the testing set's actual loan approval labels to

the expected loan approval labels, all are represented in

the Fig.1

Figure 1: Flowchart of Loan Amount Prediction

A. Algorithms Used

a). Random Forest

Favoured algorithm for machine learning. A

component of supervised learning technique is Random

Forest(RF). It will be used for ML problems involving

both classification and regression. It is, based on concept

of ensemble learning, which is technique for, integrating

many classifiers, to handle tough problems and develops

performance of the model. It name suggests that

"Random Forest is a classifier that contains a number of

decision trees on various subsets of the given dataset and

takes the average to improve the predictive accuracy of

that dataset". The random forest(RF) uses predictions,

from each decision tree(DT) and predicts, outcome

depends on, votes of majority of projections rather than

relying solely on one decision tree(DT).

The Random Forest method is best shown by

the diagram below:

Figure 2: Flowchart of Random Forest Algorithm

The following arguments support the usage of

the Random Forest algorithm.

It took shorter time for training than other

algorithms. It functions well and makes accurate

predictions of the outcome even with the massive

dataset. Accuracy can be kept even when a sizable

portion, of data is missing shown in Fig.2

b). Naive Bayes

Based on, Bayes theorem, Naive Bayes

algorithm (NB), is a supervised learning method for the

classification problems. Fig.3 shows the Flow of

Working of Naive Bayes algorithm. It basically uses,

huge training set to text categorization. One of most

simple and an effectual classification algorithm, now in

use is Naive Bayes (NB)Classifier. It facilitates the

creation of efficient, machine learning models, that can

make precise predictions shown in Fig.3. It provides

predictions depends on likelihood that, an object would

occur because, it is a probabilistic classifier. Some of the

applications for the Naive Bayes (NB) algorithms

include; sentiment analysis, article classification, and

spam filtration.

Figure 3: Flowchart for Naive Bayes Algorithm

c). Decision Tree

The prediction model known as decision

tree(DT) uses, flowchart, structure for base decisions on

incoming data. Data branches are built, and the results

are placed at nodes of leaves. Decision trees were used

to provide models that are simple to comprehend to

regression, and classification problems. In decision

support, decisions, and their potential outcomes—

including chance occurrences, resource costs, and

utility—are represented by hierarchical models known as

decision trees. The control statements of Condition are

used in this algorithmic technique, which is

nonparametric, and supervised learning, and suitable to

both classifications, and to regression applications. The

tree structure is made of root node, branches, internal

nodes, and leaf nodes and has the appearance of a

hierarchical tree. A prediction model known as the

decision tree (DT) uses, flowchart like structure for base

decisions on incoming data. Data branches are built, and

the results are placed at leaf nodes. Decision trees (DT)

were used to provide models that are simple to

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 10 This work is licensed under Creative Commons Attribution 4.0 International License.

comprehend for classification and regression problems is

as shown in the Fig.4. In decision support, decisions, and

their potential outcomes—including chance occurrences,

resource costs, and utility—are represented by

hierarchical models known as decision trees. Conditional

control statements, used in this algorithmic technique,

which is nonparametric, and supervised learning, and

suitable to both classification as well as the regression

applications. Tree structure was made up of a root node,

branches, internal nodes, and leaf nodes and has the

appearance of a hierarchical tree as shown in Fig.4.

Figure 4: Flowchart for Decision Tree (DT) Algorithm

d). KNN Algorithm

K-Nearest Neighbour, one of the basic

supervised learning-based machine learning algorithms.

The K-NN algorithm places good instance, in a category

that resembles the current categories the most,

presuming that new case, and the previous cases are

comparable. After storing all the previous data, a new

data point is categorised using the K-NN algorithm

based on similarity. This indicates that new data can be

reliably and quickly categorized using the K-NN

approach. Although the K-NN technique is most

repeatedly worked to solve classification problems, it

can also be used for solving regression, difficulties. K-

NN is a non-parametric method that makes no

assumptions about the underlying data is as shown in the

Fig.5. As a result of saving dataset of training rather than

instantly learning from it, the method, also known, to as

a lazy learner. Instead, it performs an action while

classifying data by using the dataset. The KNN approach

simply stores the data during phase of training and

categorizes fresh data into a category that is very same

for training data.

Figure 5: Flowchart of KNN Algorithm

e). Ensemble Methods

In ensemble learning techniques, number of

classifiers, like decision trees, are utilized, and their

predictions are pooled to get the most repeated result.

The two ensemble methods that were, widely used are

boosting and bagging, sometimes known as bootstrap

aggregation. The bagging method, developed by Leo

Breiman in 1996, selects a random sample of data from a

training set with replacement, allowing for multiple

selections of the individual data points. (Link leads away

from IBM.com.) (PDF, 810 KB). These models are

individually trained after the development of numerous

data samples, and depends, on the task—for instance,

classification or regression—the average or majority of

those predictions lead to a more accurate estimate as

shown in the Fig.6. This technique is often used, for

reduce variation in noisy datasets.

Figure 6: Flowchart of Ensemble Methods

B. Dataset Used

Kaggle contains, number of loan default

prediction data sets. Kaggle is a well-known platform

for, machine learning (ML) competitions. These data sets

frequently comprise a different variety of attributes

pertaining to loan applications, borrower profiles, and

payment history. We imported Loan Dataset from

Kaggle. df=pd.read_csv("loan_data_set.csv"), by using

above instruction we read and define the imported

dataset and assigned as df as shown above.

IV. RESULTS AND DISCUSSION

We will go each steps of the program. Firstly,

Python programmers frequently use the function

df.head() to show the first few rows of a DataFrame

object. You can examine a preview of data in the

DataFrame df by executing the function df.head(). The

DataFrame df's first five rows will be printed to the

console when this code is run. The head() function

accepts an integer as an input if you want to display a

different number of rows. For instance, df.head(10) will

show the DataFrame's top ten rows.

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 11 This work is licensed under Creative Commons Attribution 4.0 International License.

A short overview of a DataFrame's structure

and column information, including the data types and

memory utilization, is provided by the df.info() method

in the Pandas package for Python. The Pandas library's

df.info() method in Python gives a summary of the

DataFrame's structure and details on its columns. It

provides information about each column's data types,

non-null counts, and memory usage.

Df.isnull() code.Python's sum() function could

be used for determination of how, many columns were,

there in a DataFrame df have null or NaN values as

missing values. It gives a full list of all columns' missing

values.

The code snippet df['LoanAmount_log'] =

np.log(df['LoanAmount']) determines the natural

logarithm of the 'LoanAmount' column in the DataFrame

df and assigns the result to a new column designated as

'LoanAmount_log'. To address the problem of right-

skewed data distribution, this transformation is

frequently used. The code in the next line,

df['LoanAmount_log'].Using the syntax hist(bins=20),

the 'LoanAmount_log' column is histogrammed with 20

bins. You can see the distribution of the modified loan

amounts using the histogram is as shown in the Fig.7

Figure 7: Plot of Log scaled Loan Amount

By help of this code, the histogram will be

visible along with proper x-axis, y-axis, and title labels.

It as shown in Fig,.8.

Figure 8: Plot between Loan Amount v/s Frequency

The 'ApplicantIncome' and 'CoapplicantIncome'

columns in the DataFrame df are added up by the code

you gave to determine the total income. The total

revenue is then calculated as a natural logarithm, and the

result is stored in a new column dubbed

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 12 This work is licensed under Creative Commons Attribution 4.0 International License.

"TotalIncomelog." The 'TotalIncomelog' column is then

turned into a histogram with 20 bins.

The corresponding code and figure are shown in

Fig.9. When you running this code, a 20-bin histogram

of total final revenue that has been logarithmically

modified, named "TotalIncomelog," will be produced.

The histogram also includes a title, x-axis label, and y-

axis label.

Figure 9: Plot of Total Income in log scale

By the help of this graphic, you can examine

the modified total income's distribution and determine its

shape and characteristics. Moving on to next, Using the

mode (most common value) of each column, the code

you gave conducts missing value imputation on various

columns of the DataFrame df. It then uses

df.isnull().sum() to get number, of missing values to,

each column after doing the imputation. This code pulls

loan information into the DataFrame df from a CSV file.

The fillna() function and the mode (most frequent value)

of each column are then used to execute missing value

imputation on the chosen columns. Finally, it uses

df.isnull().sum() to determines, missing values to each

column and prints the result.

By running this code, number of missing values

in each column of the DataFrame df will be displayed.

This data enables you to check that no missing values

remain in the designated columns following the

imputation process and aids in confirming that missing

value imputation was successful. By moving onto next,

In the above figure in code, x is assigned the

values of the columns supplied in the iloc function using

indexing. The np.r_ function is used to concatenate

several ranges of column indices. The columns picked

for x include columns 1 to 4, columns 9 and 10, and

columns 13 and 14. Similarly, y is allocated values of the

12th column in the DataFrame, which is target variable.

By printing x and y, you can verify that the correct

columns are picked and allocated to these variables. The

output will shows values of x (input features) and y

(target variable) in array format. Moving on to next,

In this code, df['Gender'].isnull().The 'Gender'

column's missing value count is determined by sum().

df.shape[0] gives total numbers of, rows in, DataFrame.

By dividing the count the, missing values by total

number of rows and multiplying by 100, you get the,

percentage of, missing values, in the 'Gender'

column.The formatted text "Percentage of missing

gender is %.2f%%" is used to display the result, with

%.2f denoting a floating-point figure with two decimal

places, and %% used to print the '%' character. By

running this code, the DataFrame df's 'Gender' column's

percentage of missing values will be displayed that is

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 13 This work is licensed under Creative Commons Attribution 4.0 International License.

shown in the above figure. Moving to the next

instruction,

In the Fig.10, first section, df['Gender']. The

number of borrowers for each gender group is

determined by value_counts(), which counts each

distinct value in the 'Gender' column. Then, print() is

used to print this information.

Figure 10: Plot of Gender against Count

The bar plot of the counts for each gender

category is produced in the second section using

seaborn's countplot() function. The data is taken from the

DataFrame df, and the 'Gender' column is designated as

the x-axis variable. The color scheme for the plot is set

via the palette='Set1' option. When this code is run, a

countplot displaying the same data will be displayed also

with the counts of individuals who apply for the loans

for each gender category. A visual representation of

distribution of loans taken by gender is given by the

countplot. Moving on to instruction, In the Fig.11, first

section, df['Married']. The number of borrowers for each

category of marital status is determined by

value_counts(), which counts each distinct value in the

'Married' column. Then, print() is used to print this

information.

Figure 11: Plot of Married vs Count

The bar plot of the counts for each category of

marital status is produced in the second section using

seaborn's countplot() function. The data is taken from the

DataFrame df, and the 'Married' column is designated as

the x-axis variable. The color scheme for the plot is set

via the palette='Set1' option. By running this code, you'll

print the numbers of borrowers for each category of

marital status and see a countplot showing the same data.

Moving on to instruction. In Fig.12,first section,

df['Married'].The number of borrowers for each category

of marital status is determined by value_counts(), which

counts each distinct value in the 'Married' column. Then,

print() is used to print this information.

Figure 12: Plot of Dependents vs Count

The bar plot of the counts for each category of

marital status is produced in the second section using

seaborn's countplot() function. The data is taken from the

DataFrame df, and the 'Married' column is designated as

the x-axis variable. The color scheme for the plot is set

via the palette='Set1' option. By running this code, you'll

print the numbers of borrowers for each category of

marital status and see a countplot showing the same data.

Moving on to next instruction,

Figure 13: Plot of Self_Employed vs Count

df['Self_Employed'] in the first section.The

number of borrowers for each type of self-employment

status is determined by value_counts(), which counts

each distinct value in the 'Self_Employed' column. Then,

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 14 This work is licensed under Creative Commons Attribution 4.0 International License.

print() is used to print this information. The bar plot of

the counts for each type of self-employment status is

created in second section using seaborn's countplot()

method shown in Fig.13. The data is taken from the

DataFrame df, and the 'Self_Employed' column is

designated as the x-axis variable. The color scheme for

the plot is set via the palette='Set1' option. When this

code is run, it prints numbers of borrowers for each type

of self-employment status and displays a countplot

showing the same data.A visual representation of the

distribution of loans taken by self-employment status is

given by the countplot. Moving on to next instruction,

Figure 14: Plot of Loan Amount vs Count

The Fig.14 shows that code display a countplot

and group the number of loan applicants by loan size.

However, utilizing the 'LoanAmount' column, a

continuous numerical variable, directly with

sns.countplot()numerical variable, directly with

sns.countplot(). Moving on to next instruction,

Figure 15: Plot of Credit_History vs Count

The Fig.15 describes that, df['Credit_History']

in first section.The number of people who took loans for

each credit history category is decided by

value_counts(), which counts each distinct value in the

'Credit_History' column. Then, print() is utilised for

print this information. The bar plot of the numbers for

each credit history category is produced in the second

section using seaborn's countplot() function. The data is

taken from the DataFrame df, and the 'Credit_History'

column is designated as the x-axis variable. The color

scheme for the plot is set via the palette='Set1' option.

By running this code, you'll print the numbers of

borrowers for each category of credit history and see a

countplot showing the same data. The distribution of

loans taken by credit history is shown visually in the

countplot. Moving into next instruction,

The data is divided between training and testing

sets in this code using the train_test_split function.

Train_test_split receives the input features x and the

target variable y, and outputs four arrays: x_train, x_test,

y_train, and y_test. The random_state=0 argument

assures that the split may be replicated, and the

test_size=0.2 value specifies that 20% of the data will be

set aside for testing. In addition, LabelEncoder is

imported but not applied to any particular variable. Use

the fit_transform method of LabelEncoder to apply label

encoding to a particular feature or column. This code

illustrates how to use LabelEncoder's fit_transform

method to apply label encoding to the features of input

X_train and X_test. The X_train_encoded and

X_test_encoded variables contain the encoded features

that were the outcome.

By moving onto next instruction we get the

following results that shown in the below figure.

The code you provided applies label encoding

to multiple columns of the training data X_train using a

loop. However, it seems that you intended to encode the

same columns multiple times, which might lead to

incorrect results. In this code, a LabelEncoder is

instantiated outside the loop to ensure consistent

encoding across columns. The loop iterates over the

range 0 to 5 (exclusive) and applies label encoding to

columns at those indices in X_train.

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 15 This work is licensed under Creative Commons Attribution 4.0 International License.

LabelEncoder from sklearn.preprocessing is

being used in the code you gave to apply label encoding

to the target variable y_train. A LabelEncoder is

instantiated as label_encoder_y in this code. The y_train

data is then transformed into encoded labels by fitting

the label encoder to it using the fit_transform function.

The y_train variable receives the encoded labels back.

The encoded y_train array is printed by the code at the

end. Categorical target variables are frequently converted

into numeric values that can be incorporated into

machine learning models via label encoding. Remember

that label encoding sequentially assigns numeric labels

to categories, which could generate unwanted

ordinality.Make sure label encoding is appropriate for

your particular problem and, if necessary, take into

account employing other encoding strategies, like one-

hot encoding, for categorical target variables. Moving

onto X_test, Below code you gave uses a loop to apply

label encoding to various columns of the testing data

X_test. This code assumes that in earlier code samples

you have previously created and fitted the LabelEncoder

object label_encoder_x. The loop iterates over the

columns in X_test at the indices 0 to 5 (exclusively) and

applies label encoding to those columns. The column at

index 7 is specially encoded by the line X_test[:, 7] =

label_encoder_x.transform(X_test[:, 7]).

The code prints the modified X_test array

following the label encoding process. Please be aware

that label encoding should only be used with categorical

variables, so double-check that the columns you choose

for encoding are in fact categorical rather than ordinal or

continuous. Moving on to y_test,

LabelEncoder from sklearn.preprocessing is

used in the code you gave to apply label encoding to the

target variable y_test. A LabelEncoder is instantiated as

label_encoder_y in this code. The y_test data is then

transformed into encoded labels by fitting the label

encoder to it using the fit_transform technique. The

y_test variable receives the encoded labels back.

The encoded y_test array is then printed by the

code.

Using label encoding, categorical target variables are

routinely transformed into numerical values that can be

used in machine learning models. Keep in mind that

label encoding applies numeric labels to categories

sequentially, which may produce undesirable ordinality.

Verify if label encoding is suitable for your specific issue

and, if necessary, consider using other encoding

techniques, such as one-hot encoding, for category target

variables.

Let’s move to next,

 A StandardScaler object is created as ss in this

code. The data under training X_train is next subjected

to the fit_transform algorithm, which centers and scales

the features while fitting the scaler on the training data.

The resulting uniform training data is once again saved

in X_train. In alternative for using fit_transform for the

test data X_test, the transform method is applied.

Without having to re-fit the scaler, this applies the

scaling transformation discovered from the data under

training to the testing data. In machine learning,

standardization is a common preprocessing step where

the characteristics are changed to have a zero mean and

unit variance. It aids in normalizing feature scale, which

can enhance the efficiency and convergence of some

machine learning techniques. Before using

standardization, make sure the characteristics are

continuous and numeric. Additionally, before

standardizing, make sure you had already done label

encoding or any other required preparation processes to

the data. Let’s discuss the results of each algorithm one

by one.

A) Random Forest

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 16 This work is licensed under Creative Commons Attribution 4.0 International License.

Using RandomForestClassifier from

sklearn.ensemble, the provided code applies the Random

Forest Classifier model to training data X_train and

y_train.A RandomForestClassifier object is created as

rf_clf in this code. The classifier is then invoked using

the fit technique, with the training data X_train and the

associated target variable y_train as inputs. It then learns

the patterns and connections between the features and

the target variable by fitting Random Forest Classifier

model to the training data.After running this code, the

rf_clf object will be trained and prepared to use the

predict method to make predictions on fresh, unforeseen

data. Make sure to assess model's performance using the

testing data to determine its generalizability and make

any necessary modifications. The ensemble learning

techniques known Random Forest uses several decision

trees to produce predictions. It is well renowned for its

capacity to manage complicated datasets and produce

reliable predictions, and it is frequently used for

classification jobs.

Using the trained Random Forest Classifier

model rf_clf, the provided code predicts the target

variable for the testing data X_test and determines the

accuracy of the predictions. The Random Forest

Classifier object rf_clf is called in this code's predict

method, passing the testing data X_test. This generates

the target variable's anticipated values using the learned

model. Metrics are used to determine how accurate the

predictions are.accuracy_score, which contrasts the

actual target values y_test with the expected values

y_pred. The percentage of accurately predicted samples

is represented by the accuracy score. The code then

displays the expected values for y_pred and outputs the

accuracy score.Verify that the sklearn and metrics

modules have been correctly imported and that the

X_test and y_test dimensions match the trained model.

From above figure it shows that the accuracy from

Random Forest is 77.23%

B) Naive Bayes

Using GaussianNB from sklearn.naive_bayes,

the given code applies a Gaussian Naive Bayes classifier

to the training data X_train and y_train. A GaussianNB

object is created as nb_classifier in this code. The

classifier is then invoked using the fit technique, with the

training data X_train and the associated target variable

y_train as inputs. This enables the Gaussian Naive Bayes

model to learn the probabilistic correlations between the

features and the target variable by fitting it to the training

data. After running this code, the nb_classifier object

will be trained and prepared to use the predict method to

make predictions on fresh, unforeseen data. Make sure to

assess the model's performance using the testing data to

determine its generalizability and make any necessary

modifications. Naive Gaussian The Bayes approach,

which uses probabilistic classification, makes the

assumption that the characteristics are regularly

distributed. The Bayes theorem is used to determine the

posterior probability of each class given the features, and

predictions are then based on these probabilities. It is

well renowned for its simplicity and quick training speed

and is frequently used for classification assignments.

The provided code uses the trained Gaussian

Naive Bayes classifier nb_classifier to predict the target

variable for the testing data X_test and calculates the

accuracy of the predictions. The predict method on the

Gaussian Naive Bayes classifier object nb_classifier is

called in this code, passing the test data X_test. This

generates the target variable's anticipated values using

the learned model. Metrics are used to determine how

accurate the predictions are.accuracy_score, which

contrasts the actual target values y_test with the expected

values y_pred. The percentage of accurately predicted

samples is represented by the accuracy score. Finally, the

code outputs the estimated accuracy, which is a floating-

point value between 0 and 1, followed by "Accuracy of

Gaussian Naive Bayes" and the accuracy score.

Verify that the sklearn and metrics modules

have been correctly imported and that the X_test and

y_test dimensions match the trained model. Metrics are

used to determine how accurate the predictions

are.accuracy_score, which contrasts the actual target

values y_test with the expected values y_pred. The

percentage of accurately predicted samples is

represented by the accuracy score. The code then

displays the expected values for y_pred and outputs the

accuracy score. The accuracy obtained from Naive

Bayes algorithm is 83.73% and is as shown in the figure.

C) Decision Tree

The provided code uses the

DecisionTreeClassifier from sklearn.tree to fit a Decision

Tree Classifier to the training data X_train and y_train. A

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 17 This work is licensed under Creative Commons Attribution 4.0 International License.

DecisionTreeClassifier object is created as dt_clf in this

code. The classifier is then invoked using the fit

technique, with the training data X_train and the

associated target variable y_train as inputs. As a result,

the Decision Tree Classifier model may learn the

boundaries of decisions and patterns in the training data.

After running this code, the dt_clf object will be trained

and prepared to use the predict method to make

predictions on fresh, unforeseen data. Make sure to

assess the model's performance using the testing data to

determine its generalizability and make any necessary

modifications.

The provided code uses the

DecisionTreeClassifier from sklearn.tree to fit a Decision

Tree Classifier to the training data X_train and y_train. It

appears that you neglected to give the y_pred variable

the predicted values, nevertheless. A

DecisionTreeClassifier object is created as dt_clf in this

code. The classifier is then invoked using the fit

technique, with the training data X_train and the

associated target variable y_train as inputs. To

understand the patterns and connections between the

features and the target variable, the Decision Tree

Classifier model is fitted to the training data in this way.

The predicted values for the testing data X_test are

produced using the predict technique following model

training and are saved in the y_pred variable.

The projected values, y_pred, are printed by the code at

the end. Make that the dimensions of X_train and y_train

are the same and that you have imported the required

modules (sklearn.tree). The accuracy from the Decision

Tree (DT) Algorithm is 63.41% and it is shown in the

above figure.

D) KNN (k-Nearest Neighbors)

The provided code uses KNeighborsClassifier

from sklearn.neighbors to fit a K-Nearest Neighbors

Classifier to the training data X_train and y_train. A

KNeighborsClassifier object is created as kn_clf in this

code. The classifier is then invoked using the fit

technique, with the training data X_train and the

associated target variable y_train as inputs. In order to

learn the patterns and connections between the features

and the target variable, this fits the K-Nearest Neighbors

Classifier model to the training data.After running this

code, the kn_clf object will be trained and prepared to

use the predict method to make predictions on fresh,

unforeseen data. Make sure to assess the model's

performance using the testing data to determine its

generalizability and make any necessary modifications.

A straightforward but efficient classification technique

called K-Nearest Neighbors (KNN) classifies samples

based on the consensus opinion of their nearest

neighbors. The label that is given to a sample is

determined by the labels of its K closest neighbors in the

training set.

Using the trained K-Nearest Neighbors

Classifier model kn_clf, the code you gave predicts the

target variable for testing data X_test and determines

accuracy of the predictions. The K-Nearest Neighbors

Classifier object kn_clf is called the predict method in

this code, passing the testing data X_test. This generates

the target variable's anticipated values using the learned

model. Metrics are used to determine how accurate the

predictions are.accuracy_score, which contrasts the

actual target values y_test with the expected values

y_pred. The percentage of accurately predicted samples

is represented by the accuracy score. The code then

displays the expected values for y_pred and outputs the

accuracy score. Verify that the sklearn and metrics

modules have been correctly imported and that the

X_test and y_test dimensions match the trained model.

The accuracy from kNN algorithm is 77.23% and is

shown in theTable-1.

Table 1: Accuracy of different Algorithms

Sl.No Algorithms Accuracy

1 Random

Forest

77.23%

2 Naive Bayes 83.73%

3 Decision Tree 63.41%

4 k-Nearest

Neighbors

77.23%

From table we shall conclude that Naive Bayes

(NB) Algorithm gives the Better Accuracy of 83.73%.

V. CONCLUSION AND FUTURE

SCOPE

In this research, we created and assessed

machine learning (ML) models for chances of loan

acceptance. In order to comprehend the dataset and gain

understanding of the loan approval procedure, we started

by undertaking exploratory data analysis. In order for

address missing values, we imputed them with suitable

values depending on the distribution of the data. In order

to get the data ready for modeling, we additionally did

log transformation and scaling. Then, we trained and

assessed several classification models, including the K-

Nearest Neighbors Classifier, the Decision Tree

Classifier, the Random Forest Classifier, and the

Gaussian Naive Bayes Classifier. We used accuracy as

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 18 This work is licensed under Creative Commons Attribution 4.0 International License.

the evaluation criteria to assess these models'

performance. Based on our findings, we discovered that

the Random Forest Classifier outperformed the other

models and had the greatest accuracy of X% on the test

set. As a result, it can be concluded that the Random

Forest model is effective in forecasting loan approvals

based on the provided features. Our models have

produced encouraging results, but there is still potential

for development and additional research. Here are some

potential paths this project could go in the future:

1. Feature Engineering: To create more informative

features from the ones that already exist, we can

investigate further feature engineering strategies. To

increase the models' capacity for prediction, this may

entail developing interaction terms, polynomial features,

or incorporating domain-specific information.

2. Model Optimization: In an order to recognise best

possible combination of hyperparameters, we can adjust

the models' hyperparameters using methods such as grid

search otherwise randomized search. This might enhance

the models' functionality and result in more accurate

forecasts.

3. Handling Class Imbalance: We can use techniques

like oversampling, under sampling, or using various

evaluation metrics such as precision, recall, or F1 score

to address the class imbalance issue if the loan approval

dataset exhibits class imbalance, where the number of

approved loans significantly differs from the number of

rejected loans.

4. Ensemble Approaches: To aggregate the predictions

of various models and maybe improve performance, we

might investigate ensemble approaches like stacking,

boosting, or bagging.

5. External Data Sources: To provide more thorough

information for loan approval predictions, we can think

about including more data sources, like credit ratings or

economic indicators.

6. Deployment and Monitoring: After a model has

been chosen, it can be put into use to predict loan

approvals automatically in a production environment.

The model's accuracy and correctness can be maintained

by routinely retraining it and continuously assessing its

performance.

Abbreviations

Typical acronyms used in a project to anticipate

loan acceptance include:

RF – Random Forest

NB – Naive Bayes

DT – Decision Tree

KNN – K-Nearest Neighbors

CSV – Comma-Separated Values

ACC – Accuracy

When presenting various concepts, models, and

assessment measures in our project, these

abbreviations—which are frequently used in the fields of

machine learning and data analysis—can help with

brevity and clarity.

REFERENCES

[1] Kumar, Rajiv, et al. (2019). Prediction of loan

approval using machine learning. International

Journal of Advanced Science and

Technology, 28(7), 455-460.

[2] Supriya, Pidikiti, et al. (2019). Loan prediction

by using machine learning

models. International Journal of Engineering

and Techniques, 5(2), 144-147.

[3] Arun, Kumar, Garg Ishan & Kaur Sanmeet.

(2016). Loan approval prediction based on

machine learning approach. IOSR J. Comput.

Eng, 18(3), 18-21.

[4] Ashwitha, K., et al. (2022). An approach for

prediction of loan eligibility using machine

learning. International Conference on Artificial

Intelligence and Data Engineering (AIDE).

IEEE.

[5] Kumari, Ashwini, et al. (2018). Multilevel

home security system using arduino & gsm.

Journal for Research, 4.

[6] Patibandla, RSM Lakshmi & Naralasetti

Veeranjaneyulu. (2018). Survey on clustering

algorithms for unstructured data. Intelligent

Engineering Informatics: Proceedings of the

6th International Conference on FICTA,

Springer Singapore.

[7] Tejaswini, J., et al. (2020). Accurate loan

approval prediction based on machine learning

approach. Journal of Engineering Science,

11(4), 523-532.

[8] Santhisri, K. & P. R. S. M. Lakshmi. (2015).

Comparative study on various security

algorithms in cloud computing. Recent Trends

in Programming Languages, 2(1), 1-6.

[9] Sri, K. Santhi & P. R. S. M. Lakshmi. (2017).

DDoS attacks, detection parameters and

mitigation in cloud environment. National

Conference on the Recent Advances in

Computer Science & Engineering (NCRACSE-

2017), Guntur, India.

[10] Viswanatha, V., A. C. Ramachandra & R.

Venkata Siva Reddy. (2022). Bidirectional

DC‑DC converter circuits and smart control

algorithms: a review.

[11] Sri, K. Santhi, P. R. S. M. Lakshmi & MV

Bhujanga Ra. (2017). A study of security and

privacy attacks in cloud computing

environment.

[12] Dr, Ms RSM Lakshmi Patibandla, Ande Prasad

& Mr. YRP Shankar. (2013). Secure zone in

cloud. International Journal of Advances in

Computer Networks and its Security, 3(2), 153-

157.

[13] Viswanatha, V., et al. (2020). Intelligent line

follower robot using MSP430G2ET for

industrial applications. Helix-The Scientific

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-4 (August 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.4.2

 19 This work is licensed under Creative Commons Attribution 4.0 International License.

Explorer| Peer Reviewed Bimonthly

International Journal, 10(02), 232-237.

[14] Dumala, Anveshini & S. Pallam Setty. (2020).

LANMAR routing protocol to support real-time

communications in MANETs using Soft

computing technique. Data Engineering and

Communication Technology: Proceedings of

3rd ICDECT-2K19, Springer Singapore.

[15] Anveshini, Dumala & S. Pallamsetty. (2019).

Investigating the impact of network size on

lanmar routing protocol in a multi-hop ad hoc

network. I-Manager's Journal on Wireless

Communication Networks, 7(4).

[16] Khadherbhi, Sk Reshmi & K. Suresh Babu.

(2015). Big data search space reduction based

on user perspective using map

reduce. International Journal of Advanced

Technology and Innovative Research 7, 3642-

3647.

[17] Begum, Me Jakeera & M. Venkata Rao. (2015).

Collaborative tagging using

captcha. International Journal of Innovative

Technology And Research, 3, 2436-2439.

[18] Maddumala, Venkata Rao, R. Arunkumar & S.

Arivalagan. (2018). An empirical review on

data feature selection and big data

clustering. Asian Journal of Computer Science

and Technology, 7(S1), 96-100.

[19] Gowthami, K., et al. Credit card fraud detection

using logistic regression. Journal of

Engineering Sciences, 11.

[20] A C, R., V. V, K. K, S. H & P. S. E. (2022). In-

cabin radar monitoring system: detection and

localization of people inside vehicle using vital

sign sensing algorithm. International Journal

on Recent and Innovation Trends in Computing

and Communication, 10(8), 104-9.

DOI:10.17762/ijritcc.v10i8.5682.

[21] V. V, R. A. C, S. B. M, A. Kumari P, V. S.

Reddy R & S. Murthy R. (2022). Custom

hardware and software integration: bluetooth

based wireless thermal printer for restaurant and

hospital management. IEEE 2nd Mysore Sub

Section International Conference (MysuruCon),

Mysuru, India, pp. 1-5. DOI:

10.1109/MysuruCon55714.2022.9972714.

[22] V. V, R. A. C, V. S. R. R, A. K. P, S. M. R & S.

B. M. (2022). Implementation of IoT in

agriculture: A scientific approach for smart

irrigation. IEEE 2nd Mysore Sub Section

International Conference (MysuruCon),

Mysuru, India, pp. 1-6. DOI:

10.1109/MysuruCon55714.2022.9972734.

[23] Viswanatha, V. & R. Venkata Siva Reddy.

(2017). Digital control of buck converter using

arduino microcontroller for low power

applications. International Conference On

Smart Technologies For Smart Nation

(SmartTechCon). IEEE.

[24] Viswanatha, V., Venkata Siva Reddy & R.

Rajeswari. (2020). Research on state space

modeling, stability analysis and pid/pidn control

of dc–dc converter for digital implementation.

In: Sengodan, T., Murugappan, M., Misra, S.

(eds) Advances in Electrical and Computer

Technologies. Lecture Notes in Electrical

Engineering, 672. Springer, Singapore. DOI:

10.1007/978-981-15-5558-9_106.

.

