
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962
 Volume-10, Issue-4 (August 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.4.32

 243 This work is licensed under Creative Commons Attribution 4.0 International License.

Prime Numbers in Data Compression: Leveraging Mathematical

Properties for Efficient Storage

Parameswaran.P

Lecturer, Mathematics, VSVN Polytechnic College, Virudhunagar, Tamilnadu, INDIA

ABSTRACT
Data compression is a cornerstone of modern

computing, enabling efficient storage and transmission of

information. Prime numbers, revered for their unique

mathematical properties, find intriguing applications in

various data compression algorithms. This article delves

into the role of prime numbers in data compression,

elucidating their significance and demonstrating their

utilization through equations. The study assess the

importance of prime number in data compression.

Keywords-- Data Compression, Prime Numbers,

Equations

I. INTRODUCTION PRIME

FACTORS AND HUFFMAN CODING

Huffman coding is a widely used compression

technique that assigns variable-length codes to symbols

based on their frequencies in the input data. The

selection of code lengths can be optimized using prime

numbers. The equation for Huffman coding's average

code length is given by:

Where,

L is the average code length.

Pi is the probability of symbol i occurring

Li is the length of the code for symbol i.

II. BURROWS-WHEELER

TRANSFORM (BWT) AND PRIME

FACTORS

The Burrows-Wheeler Transform is a reversible

data transformation technique that reorganizes data to

facilitate better compression ratios. In BWT, prime

numbers are employed during the rotation and sorting

stages to achieve improved compression efficiency. The

algorithm rearranges data into blocks and sorts them
based on prime number rotations, resulting in data

patterns that are more amenable to compression.

The Burrows-Wheeler Transform involves the

following steps:

a. Circular Rotations: Create all possible

circular rotations of the input data.

b. Sorting: Sort the rotations lexicographically.

c. Extraction: Extract the last column of the

sorted rotations to obtain the transformed data.

2.1. Prime Factors and Enhanced Transform
Prime factors play a crucial role in improving

the efficiency of the Burrows-Wheeler Transform. The

use of prime factors during rotation and sorting stages

enhances the transformation process by introducing a
unique pattern that benefits subsequent compression

algorithms. This step is particularly significant for inputs

with repetitive patterns.

2.2. Benefits of Prime Factors in BWT
The introduction of prime factors into the BWT

process results in several benefits:

a. Enhanced Compression Efficiency: The use

of prime factors creates a rearranged pattern that is more

conducive to compression. The transformed data

contains clusters of similar characters, making it easier

for compression algorithms to identify and encode these

patterns.

b. Reduced Frequency of Collisions: Prime

factors help distribute characters across rotations in a

way that minimizes the likelihood of collisions during

sorting. This ensures a more organized arrangement of

characters.

2.3. Applications and Beyond
The transformed data obtained through the

Burrows-Wheeler Transform serves as a foundation for

various compression algorithms, including Move-to-

Front (MTF) coding, Run-Length Encoding (RLE), and

Huffman coding. These algorithms capitalize on the

reorganized patterns to achieve efficient compression

while maintaining reversibility for decompression.

III. PRIME MODULUS IN LOSSLESS

COMPRESSION

Prime numbers are utilized in some lossless
compression algorithms by employing prime modulus

operations. Modulus operations involve finding the

remainder of the division of one number by another. In

the context of lossless compression, prime modulus

operations offer distinct advantages. When applied to

specific tasks, they help identify patterns, reduce data

redundancy, and facilitate more efficient encoding. For

instance, the Rabin-Karp rolling hash function employs

prime numbers to efficiently detect similarities between

blocks of data. The algorithm uses a sliding window

approach and computes a hash value modulo a prime

number, allowing for rapid pattern matching and

reducing false positives.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962
 Volume-10, Issue-4 (August 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.4.32

 244 This work is licensed under Creative Commons Attribution 4.0 International License.

Prime modulus operations in the Rabin-Karp

algorithm enable efficient pattern recognition by

converting sequences of characters into unique hash

values. If two sequences have the same hash value, it

suggests a potential match. As prime numbers minimize

the likelihood of hash collisions, false positives are

reduced, resulting in accurate and efficient pattern

matching.

Application in Data Deduplication
Data deduplication involves identifying and

eliminating duplicate data in storage or transmission. By

employing prime modulus operations, lossless

compression algorithms can quickly identify and

eliminate redundant blocks of data, resulting in

significant space savings.

IV. EXPLOITING PRIME-LENGTH

WINDOWS

Some compression algorithms leverage prime-

length windows during encoding. By using prime-length
windows, these algorithms ensure that patterns in the

data align less frequently, leading to more unique

symbols and improved compression efficiency. This is

particularly useful in run-length encoding and

dictionary-based compression algorithms.

4.1. Understanding Prime-Length Windows
Prime-length windows refer to a data

processing technique where the input data is divided into

segments (windows) whose lengths are prime numbers.

This approach offers unique benefits that can

significantly impact the compression process.

4.2. Enhanced Pattern Distribution
When using prime-length windows, the

distribution of patterns within the data changes

compared to regular window lengths. This alteration

reduces the frequency of pattern alignment and

repetition, resulting in a more diversified set of patterns.
This diversity makes the data more amenable to efficient

compression by reducing redundancy.

4.3. Mitigating Repetitive Sequences
Repetitive sequences are a common challenge

in data compression. When prime-length windows are

applied, the alignment of repetitive patterns is less

frequent due to the nature of prime numbers. This leads

to fewer identical segments being compressed together,

minimizing the need for additional encoding and further

optimizing storage.

4.4. Improved Compression Ratios
The strategic use of prime-length windows can

lead to improved compression ratios, where more data

can be represented using fewer bits. As prime numbers

introduce irregular patterns and reduce predictability,

they create opportunities for compression algorithms to

identify unique structures, resulting in more efficient

encoding.

4.5. Applications in Run-Length Encoding (RLE) and

Beyond

Run-Length Encoding (RLE) is a basic but

effective compression technique that exploits

consecutive repetitions of data to achieve compression.

When combined with prime-length windows, RLE can

achieve even greater efficiency by reducing the

likelihood of consecutive repetitions aligning perfectly

within windows.

4.6. Beyond Compression: Enhanced Data Processing
The use of prime-length windows not only

benefits compression but can also have applications in

other data processing tasks. For instance, prime-length

windowing can enhance data deduplication, improve

indexing efficiency, and optimize search algorithms by

altering the way patterns are distributed within the data.

V. CONCLUSION

Prime numbers, with their distinctive

mathematical properties, offer data compression

algorithms a unique advantage in achieving efficient

storage and transmission. From optimizing code lengths

in Huffman coding to enhancing the reorganization of

data in the Burrows-Wheeler Transform, prime numbers

play a pivotal role in shaping modern compression

techniques. As data continues to grow in volume and

importance, leveraging prime numbers in data

compression algorithms remains a powerful strategy to

reduce storage space and enhance data transmission

efficiency.

REFERENCES

[1] Shiomi, H., Shimobaba, T., Kakue, T., & Ito, T. (2020).

Lossless Compression Using the Ramanujan Sums:

Application to Hologram Compression. IEEE Access, 8,

144453–144457.

https://doi.org/10.1109/ACCESS.2020.3014979

[2] Mustafa, R. (2017). An Improved Decoding Technique

for Efficient Huffman Coding. Journal of Computer Science

Applications and Information Technology, 2(1), 1–5.

https://doi.org/10.15226/2474-9257/2/1/00110

[3] Jiang, X., Lee, M. H., Paudel, R. P., & Shin, T. C.

(2006). Codes from generalized hadamard matrices. In

Second International Conference on Systems and Networks

Communications, ICSNC 2006.

https://doi.org/10.1109/ICSNC.2006.27

[4] Correa, J. D. A., Pinto, A. S. R., & Montez, C. (2022,

August 1). Lossy Data Compression for IoT Sensors: A

Review. Internet of Things (Netherlands). Elsevier B.V.

https://doi.org/10.1016/j.iot.2022.100516

[5] Fitriya, L. A., Purboyo, T. W., & Prasasti, A. L. (2017).

A review of data compression techniques. International

Journal of Applied Engineering Research. Research India

Publications.

[6] Kodituwakku, S. R., & Amarasinghe, U. S. (2010).

Comparison of Lossless Data Compression Algorithms.

Indian Journal of Computer Science and Engineering, 1(4),

416–425.

