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ABSTRACT 

Laminated composite materials offer a versatile 

design approach for achieving the desired levels of stiffness 

and strength by selecting specific lamination schemes. The 

Trigonometric Shear Deformation Theory (TrSDT) 

effectively addresses the appropriate distribution of 

transverse shear strains throughout the plate thickness 

while maintaining stress-free boundary conditions on the 

plate's top surfaces. Consequently, there is no need for a 

shear correction factor. 

In this research paper, we use the Trigonometric 

Shear Deformation Theory (TrSDT) that takes into account 

the influence of transverse shear deformation. The in-plane 

displacement field incorporates a sinusoidal function with 

respect to the thickness coordinate to accommodate the 

effects of shear deformation. Theories that involve 

trigonometric functions based on the thickness coordinate in 

the displacement fields are collectively referred to as 

Trigonometric Shear Deformation Theories (TrSDTs). 

In the present study, we conduct a thermal stress 

analysis of Laminated Composite Plates using the TrSDT. 

This theory eliminates the need for shear correction factors 

and provides a more accurate distribution of interlaminar 

stresses compared to other methods like CPT and FOST. 

We assess deflection and stress at various locations and for 

different aspect ratios under thermal loads using TrSDT. 

Stress evaluations are carried out analytically, and the 

results are validated by comparing them with existing 

findings from the literature. 

To further verify our findings, we model a 

composite laminate under thermal loads using the 

commercial Finite Element Method tool ABAQUS, and our 

results are validated against those obtained with the TrSDT 

for plates with simply supported boundary conditions. 
 

Keywords-- Composite Laminated Plates, Trigonometric 

Shear Deformation Theory (TrSDT), Thermal Loading, 

ABAQUS 

 

 

I. INTRODUCTION 
 

Plate structures play a pivotal role as primary 

load-bearing elements in the realm of Structural 

Mechanics, finding widespread applications in terrestrial, 

naval, and aeronautical engineering. These plates often 

endure substantial in-plane compression forces and/or 

shear loads. What makes them particularly versatile is 

their mechanical properties in various directions and their 

exceptional strength-to-weight ratios, which allow for 

tailored configurations. Furthermore, they exhibit a range 

of unique characteristics, encompassing resistance to 

corrosion, high damping capacity, temperature resilience, 

and a low coefficient of thermal expansion. 

These exceptional attributes have led to an 

expanded utilization of advanced composite materials in 

structures exposed to thermal environments. The use of 

highly fiber-reinforced materials empowers designers to 

finely control the structure's stiffness and strength. 

Composite laminates are formed by stacking layers of 

different composite materials and/or adjusting fiber 

orientations, with their planar dimensions being 

significantly larger than their thickness. In many cases, 

laminates are employed in applications that demand both 

axial and bending strength, treating them effectively as 

plates. 

Numerous plate theories are accessible to 

describe the static and dynamic behavior of such plates. 

The choice of a specific plate theory depends on factors 

like plate geometry and material properties, with one 

theory being more suitable than another in various 

scenarios. Understanding the distinctions between these 

theories and their practical application is of great 

significance to engineers involved in plate structures and 

researchers engaged in advancing our understanding of 

plate behavior. 

Shimpi and Ghugal [1] introduced a novel 

layerwise trigonometric shear deformation theory for the 

analysis of two-layered cross-ply laminated beams. This 

theory not only streamlines the number of primary 

variables, reducing them to even fewer than those in the 

first-order shear deformation theory, but also eliminates 

the need for a shear correction factor. Ghugal and Shimpi 

[2] provided an overview of displacement and stress 

based refined theories for isotropic and anisotropic 

laminated plates. They discussed various equivalent 

single-layer and layerwise theories for laminated plates, 

highlighting their advantages and disadvantages. The 

paper also referenced exact elasticity solutions for plate 

problems where available, addressing various critical 

issues related to plate theories based on the literature 

review. Matsunaga [3] described a two-dimensional 

global higher-order deformation theory for evaluating 

inter-laminar stresses and displacements in cross-ply 

multilayered composite and sandwich plates subjected to 
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thermal loads. Chen et al. [4] discussed a new higher-

order shear deformation theory based on a global-local 

superposition technique, emphasizing the satisfaction of 

free surface conditions, geometric continuity conditions 

at interfaces, and stress continuity conditions at 

interfaces. Kapuria and Achary [5] introduced a new 

efficient higher-order zigzag theory for laminated plates 

subjected to thermal loading. This theory modifies the 

third-order zigzag model by incorporating a layerwise 

variable approximation for deflection, explicitly 

considering the transverse thermal strain. Ferreira et al. 

[6] discussed a trigonometric shear deformation theory 

for symmetric composite plates, discretized using a 

meshless method based on global multiquadric radial 

basis functions. Shimpi [7] explored the First-Order Shear 

Deformation Theory, particularly those proposed by 

Reissner and Mindlin, which remain in use due to their 

simplicity. Two new displacement-based first-order shear 

deformation theories were introduced, each involving 

only two unknown functions, in contrast to the three 

functions used in Reissner's and Mindlin's theories. 

Zhang et al. [8] presented a review of the recent 

developments in finite element analysis for laminated 

composite plates from 1990 onwards. The review covered 

finite elements based on various laminated plate theories 

for free vibration, static analysis, buckling, postbuckling 

analysis, geometric nonlinearity, large deformation 

analysis, and failure and damage analysis of composite 

laminated plates. Roylance [9] outlined the mechanics of 

fiber-reinforced laminated plates, elucidating a 

computational approach that connects in-plane strain and 

curvature with tractions and bending moments imposed 

on the laminate. The paper reviewed constitutive relations 

for isotropic materials and demonstrated the 

straightforward extension to transversely isotropic 

composite laminae. Kant and Shiyekar [10] presented a 

comprehensive analytical model that accounted for shear 

deformation and transverse normal thermal strains in the 

thermal stress analysis of cross-ply laminates subjected to 

linear or gradient thermal profiles across the laminate's 

thickness. The model used twelve degrees of freedom to 

expand the primary displacement field in the thickness 

direction. The resulting equilibrium equations, based on 

higher-order shear and normal deformation theory, were 

variationally consistent and derived using the principle of 

virtual work. Numerical results for displacements and 

stresses were compared with classical plate theory, first-

order shear deformation theory, and higher-order shear 

deformation theory. Mantari et al. [11] developed a 

trigonometric shear deformation theory for isotropic and 

composite laminated and sandwich plates, introducing a 

parameter 'm' to align results with three-dimensional 

elasticity bending solutions. This theory effectively 

distributes transverse shear strains across the plate 

thickness, eliminating the need for a shear correction 

factor. Tornabene et al. [12] employed the Generalized 

Differential Quadrature (GDQ) method to study 

laminated composite degenerate shell panels, including 

rectangular and annular plates. The method enabled the 

determination of stress profiles through the thickness of 

plates without specifying specific equations for these 

plate types, making the theoretical treatment general. 

Thai et al. [13] introduced an inverse tangent shear 

deformation theory (ITSDT) for the dynamic, free 

vibration, and buckling analysis of laminated composite 

and sandwich plates. Ghugal and Kulkarni [14] addressed 

thermal stresses and displacements in orthotropic, two-

layer antisymmetric, and three-layer symmetric square 

cross-ply laminated plates subjected to nonlinear thermal 

loads through the thickness of the plates. They employed 

trigonometric shear deformation theory. 

Srinivasan  and  Rao [15] presented Bending, 

vibration and buckling of simply supported thick 

orthotropic rectangular plates and laminates. Pagano [16] 

developed exact Solutions for Rectangular Bidirectional 

Composites and Sandwich Plates. Karama [17] presented 

A new theory for laminated composite plates. Reddy [18] 

developed third order shear deformation theory. Kulkarni 

and Kapuria [19] developed A new discrete Kirchhoff 

quadrilateral element based on the third-order theory for 

composite plates. Shaikh and Chakrabarti [20] presented 

a New Plate Bending Element Based on Higher Order 

Shear Deformation Theory for the Analysis of Composite 

Plates. Chen and Wu [21] presented a new higher-order 

shear deformation theory and refined beam element of 

composite laminates. Sahooand and Singh [23] developed 

a new shear deformation theory for the static analysis of 

laminated composite and sandwich plates. Kant and 

Swaminathan [24] developed analytical solutions for the 

static analysis of laminated composite and sandwich 

plates based on a higher order refined theory. Reddy and 

Liu [25] presented a higher-order shear deformation 

theory of laminated elastic shells.  

In this paper, to confirm our results, we conduct a 

thermal analysis of a composite laminate in ABAQUS 

[22], a commercial Finite Element Method software. 

Subsequently, we compare our findings with those 

obtained through the application of the Trigonometric 

Shear Deformation Theory (TrSDT) to plates with 

boundary conditions characterized as simply supported. 

 

II. FORMULATION OF 

TRIGONOMETRIC SHEAR 

DEFORMATION THEORY (TrSDT) 

 

We use a Trigonometric Shear Deformation 

Theory (TrSDT) that not only considers the impact of 

transverse shear deformation but also accounts for the 

influence of transverse normal strain. In this theory, the 

in-plane displacement field is defined using a sinusoidal 

function with respect to the thickness coordinate to 

accommodate the effects of shear deformation. 

Additionally, a cosine function in the thickness 

coordinate is employed in the transverse displacement to 

address the impact of transverse normal strain. The 

governing equations and boundary conditions for this 
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theory are derived through the application of the principle 

of virtual work. 

Consider a rectangular cross-ply laminated plate 

with dimensions length a, width b, and total thickness h, 

consisting of orthotropic layers as depicted in Fig. 1. 

Each layer's material is assumed to possess a plane of 

material property parallel to the x-y plane. The coordinate 

system is aligned so that the plate's mid-plane coincides 

with the x-y plane, while the z-axis is perpendicular to the 

middle plane. The upper surface of the plate, situated at z 

= -h / 2, experiences a constant thermal load denoted as T 

(x, y, z). The plate's region is defined within the right-

handed Cartesian coordinate system of (x, y, z). 

 
Figure 1: Laminae with reference axes  

 

2.1 The Displacement Field In accordance with plate theory, the 

displacement field for a plate with a global thickness 

denoted as h can be defined as follows: 

    

 

    (1) 

 
 

where, u and v are the in-plane displacements at 

any point (x, y, z). u0 and v0 signify the in-plane 

displacement of the point (x, y, 0) on the mid-plane, w is 

the transverse deflection, fx and fy are the rotations of the 

normal to the mid-plane about the y and x axes 

respectively. The strain-displacement relationships is 

given as, 

 

        (2)    

Strains are expressed for symmetric laminates as 
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          (3) 

where, 

   (4) 

 

Neglecting sz for each layer, the stress-strain 

relations in the orthotropic local coordinate system can 

be expressed as

 

 

    (5) 

 

This equation is referred to as the Constitutive 

Relationship for the material. In this equation, subscripts 

1 and 2 represent the fiber and the direction normal to the 

fiber directions, 3 denotes the direction normal to the 

plate. Through appropriate coordinate transformations, 

the stress-strain relationships for the k
th

 layer in the global 

x-y-z coordinate system can be derived as follows:

 

 

    (6) 

 

2.2 Governing Equations 

 

The governing equations are derived from the 

principle of virtual displacements. 
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 (7) 

 

 Substituting stress resultants in terms of 

displacements in the governing equilibrium equations, we 

can obtain the displacements, strains and stresses 

induced. 

 

III.  RESULTS AND DISCUSSION 
 

 In this section, examples of composite laminated 

plate are presented to show accuracy and applicability of 

ABAQUS under static loading. The results obtained are 

compared with published results. 

Example 1: Numerical investigation of square composite 

laminated plates under mechanical loading (b=a) 

A simply supported square laminated composite 

plate having dimension 1mx1m of side „a‟ and „b‟ 

thickness „h‟ for various aspect ratios is composed of 

three equally layers oriented at [0
0
/90

0
/0

0
] subjected to 

doubly sinusoidal load 10 kN/m
2
 as amplitude for m = 1, 

n = 1. The result of displacement and stress using 

ABAQUS software and with the literature 

 

 are verified. The material properties are    

 

 Formulae used for dimensionless maximum 

transverse deflection and stress are as follows. 

 

 
 

The results and the contour plots for transverse 

deflection, normal stresses and in-plane shear stress are 

shown in below Table 1 and Fig. 2. 
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Table 1: Non-dimensional transverse deflection, normal stresses and in-plane shear stress of simply supported symmetric 

square composite laminated plate [0
0
/90

0
/0

0
] under SSL for a/h=100 (b=a) 

 [  ] % error w.r.t. 3D Exact 

 

 
(w)                                                                           ( ) 

 

 
( )                                                                                ( ) 

 

Figure 2: Contour plots for dimensional transverse deflection, normal stress and in-plane shear stress for simply supported 

symmetric square composite laminated plate [0
0
/90

0
/0

0
] under SSL for a/h=100 (b=a) in ABAQUS 

a/h Theory 
 

 
   

100 

 

Present TrSDT 
0.434054 

[-0.15] 

0.539014 

[0.002] 

0.180521 

[-0.26] 

-0.0213483 

[-0.25] 

Present ABAQUS [22] 
0.4254 

[-2.14] 

0.5257 

[-2.47] 

0.0258 

[-85.74] 

0.02000 

[-6.10] 

3D Exact [16] 0.4347 0.539 0.181 0.0213 

Sahooand and Singh [23] 
0.4343 

[-0.09] 

0.5448 

[1.07] 

0.182 

[0.55] 

0.0215 

[0.93] 

Mantari [11] 
0.4353 

[0.14] 

0.539 

[0] 

0.181 

[0] 

0.0214 

[0.46] 

Karama [17] 
0.435 

[0.067] 

0.538 

[-0.187] 

0.18 

[-0.55] 

0.0213 

[0] 

Reddy [18] 
0.4342 

[-0.11] 

0.539 

[0] 
- - 

Kulkarni and Kapuria [19] 
0.4349 

[0.05] 

0.5403 

[0.24] 

0.181 

[0] 

0.0214 

[0.46] 

Sheikh and Chakrabarti [20] 
0.4350 

[0.07] 

0.5496 

[1.9] 

0.1828 

[0.99] 

0.0215 

[0.93] 

Kant and Swaminathan [24] 
0.4343 

[-0.09] 

0.5392 

[0.04] 

0.1807 

[-0.16] 

0.0214 

[0.46] 
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Example 2: Numerical investigation of rectangular 

composite laminated plates under mechanical loading 

(b=3a) 

A simply supported rectangular composite 

laminated plate having dimension 1mx1m of side „a‟ and 

„b‟ thickness „h‟ for various aspect ratios is composed of 

three equally layers oriented at [0
0
/90

0
/0

0
] subjected to 

doubly sinusoidal load 10 kN/m
2
 as amplitude for m=1, 

n=1.The result of displacement and stress using 

ABAQUS software and with the literature are verified. 

The material properties are  

 

 
 

 Formulae used for non-dimensionalsed 

maximum transverse deflection and stress are as per 

previous problem. The results as shown following Table 

2. 

 

Table 2: Non-dimensionalized transverse deflection, normal stresses and in-plane shear stress in three-layer [0
0
/90

0
/0

0
] 

rectangular composite laminated plate under sinusoidal load (b = 3a) for a/h=100 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  ] % error w.r.t. 3D Elasticity 

 

Example 3: Numerical investigation of composite 

laminated plates under thermal loading 

A simply supported laminated composite plate 

having dimension 1mx1m of side „a‟ and thickness „h‟ is 

composed of two and three equally layers oriented at 

[0
0
/90

0
] and [0

0
/90

0
/0

0
] respectively subjected to doubly 

sinusoidal temperature load of 30
0
c as amplitude for m=1, 

n=1.The result of displacement and stress are derived 

using ABAQUS software and with the literature are 

verified. Following are the material properties, 

 

 
 

Results are presented in Tables 3 and 4.  

 

 

 

 

 

 

 

 

 

 

a/h Theory 
 

 
   

100 

 

Present TrSDT 
0.506824 

[-0.23] 

0.623975 

[0.0] 

0.0252759 

[0.0] 

0.0083118 

[0.4] 

Present ABAQUS [22] 
0.4973 

[-2.10] 
- - - 

3D Elasticity [15] 0.5080 0.624 0.025 0.0083 

Mantari [11] 
0.5081 

[0.0] 

0.624 

[0.0] 

0.025 

[0.0] 

0.0083 

[0.4] 

Reddy and Liu [25]   
0.5070 

[0.2] 

0.624 

[0.0] 

0.025 

[0.0] 

0.0083 

[0.4] 
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Table 3 In-plane displacement and normal stresses in Composite Laminated Square Plate for all edges simply supported 

composite laminated square plate [0
0
/90

0
/0

0
] under sinusoidal temperature loading for a/h = 10 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  ] % error w.r.t. Exact 

 

Table 4 In-plane displacement and normal stresses in Composite Laminated Square Plate for all edges simply supported 

composite laminated square plate [0
0
/90

0
]  under sinusoidal temperature loading for a/h = 10 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

[  ] % error w.r.t. Exact 

 

IV. CONCLUSIONS 
 

  The conclusions drawn from the analysis in the 

present study are as follows: 

1.     When analyzing square and rectangular composite 

laminated plates with the [0
0
/90

0
/0

0
] orientation under 

mechanical doubly sinusoidal loading, we calculated 

non-dimensional transverse displacement, normal 

stresses, and shear stress at their maximum absolute 

values. The results obtained using ABAQUS and 

TrSDT for non-dimensional transverse displacement 

were found to closely match with analytical results, 

for various aspect ratios under simply supported 

loading. ABAQUS provided better results for both 

displacement and stresses. 

 

2.     When analyzing square and rectangular composite 

laminated plates with the [0
0
/90

0
] and [0

0
/90

0
/0

0
] 

orientations under thermal doubly sinusoidal loading, 

we calculated non-dimensional transverse 

displacement, normal stresses, and shear stress at 

their maximum absolute values. Like the mechanical 

loading analysis, the results from ABAQUS and 

TrSDT for non-dimensional transverse displacement 

were in good agreement with Exact results for various 

aspect ratios under simply supported loading. Once 

again, ABAQUS produced more accurate results for 

displacement and stresses. 

3.     In all the analyzed problems of composite laminated 

plates, ABAQUS provided increasingly accurate 

a/h Qty Source Result 

10 

 

 

u 

 

 

 

Present ABAQUS [22] 
- 0.1635 

[0.3] 

Exact [16] -0.163 

Present TrSDT - 0.170801 

v 

 

 

Present ABAQUS [22] 
-0.3916 

[2.15] 

Exact [16] 0.4 

Present TrSDT 0.414125 

sx 

 

Present ABAQUS [22] 3.36 

Exact [16] 3.4 

sy 

 

 

Present ABAQUS [22] 1.51 

Exact [16] 1.39 

a/h Qty Source Result 

10 

 

 

u 

 

 

 

Present ABAQUS [22] - 0.313  [15.24] 

Exact [16] -0.2716 

 

v 

 

 

Present ABAQUS [22] -0.237 [-12.22] 

Exact [16] 0.27 



International Journal of Engineering and Management Research                     Peer Reviewed & Refereed Journal    

e-ISSN: 2250-0758  |  p-ISSN: 2394-6962                                                       Volume-13, Issue-5 (October 2023) 

https://ijemr.vandanapublications.com                                                           https://doi.org/10.31033/ijemr.13.5.7  

 

  45 This work is licensed under Creative Commons Attribution 4.0 International License. 

 

results for displacements and stresses as the mesh size 

decreased. 

4.     In the case of composite laminated plates, the 

numerical values of displacements increased as the 

aspect ratios increased, indicating that thinner plates 

exhibited greater displacement. 
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