
International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 46 This work is licensed under Creative Commons Attribution 4.0 International License.

CodePlex: Software Complexity Measuring Tool based on ECB Measure

Dharmathilake K. A. D. K. D
1
, Nuwanthika P. G. P. J.

2
, Fernando N. K. B.

3
 and Bhanuka H. L.

4

1
Student, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

2
Student, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

3
Student, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

4
Student, Department of Software Engineering, Sri Lanka Institute of Information Technology, SRI LANKA

1
Corresponding Author: it21214820@my.sliit.lk

Received: 17-09-2023 Revised: 03-10-2023 Accepted: 21-10-2023

ABSTRACT
The surge in popularity of object-oriented

programming as a predominant paradigm in software

development has spurred numerous studies to introduce

metrics for assessing the complexity of object-oriented

programs. These metrics typically fall into two primary

categories: those focusing on object-oriented aspects and

those centered on cognitive aspects, delineating their

principal areas of concern when evaluating program

complexity. Within the realm of cognitive aspects, the

majority of metrics have historically been confined to the

consideration of no more than three complexity variables.

However, the ECB (Enhanced Cognitive Based) measure

stands as a notable exception, capable of encompassing and

addressing four or more intricate facets in the assessment of

software program intricacy and difficulty. This research

paper undertakes the exploration of the incorporation of

these multidimensional metrics as refinements to the existing

weighted composite complexity CB measure, originally

introduced by Chhillar and Bhasin. In doing so, it endeavors

to furnish a more comprehensive and holistic framework for

the evaluation of program complexity, accommodating both

object-oriented and cognitive dimensions. Furthermore, the

study assumes the pivotal role of empirically validating the

practical effectiveness of the ECB measure, seeking to bridge

the chasm between theoretical metrics and their tangible

applicability in real-world settings. Such an endeavor holds

profound significance for software developers and

researchers, proffering invaluable insights that can advance

our understanding and management of intricate object-

oriented programs.

Keywords-- CB Measure, Software Complexity Measure,

Object Oriented Metric, Weighted Composite Complexity

I. INTRODUCTION

The literal meaning of complexity is referred to

as a state of difficulty having parts of understanding or

comprehending something. [1] In the context of software,

complexity pertains to the intricacy that hinders the clear

understanding of various aspects of the software process.

It is the degree to which challenges are faced when

verifying and understanding software systems and their

components from the design phase to the implementation

and maintenance phase [2]. Software complexity is not a

new concept. Many researchers have been interested in

this subject since the 1970s [3] [4]. Due to that, it was

evident that the importance of having metrics to measure

the software complexity is necessary. Over time, a

multitude of metrics for measuring software complexity

have been introduced. [3] [4] [5] [6] [7] [8] [9] Also,

several classifications of these metrics were identified to

understand the scope. Notably, a seminal classification

was presented by Halstead [3].

 Product Metric – Metrics to describe and

quantify qualities of the software product such as

size, complexity, design features, performance,

and quality level.

 Process Metric – Metrics to improve software

development and maintenance such as

identification and removal of defects during

development, defect testing patterns, and time

taken to respond to defects.

 Project Metric- Metric to explain qualities of the

project such as the number of software

programmers, life cycle over the software, cost,

and productivity.

Though there are several metrics introduced, certain

problems still arise related to this context. One is the

ambiguousness and inconsistency of these metrics. [10]

Though the metrics are well-defined and proven with

evidence it was found out that most metrics cannot be

applicable to each software program. Also due to the

improved large diversity of programming languages and

concepts these metrics which might have been useful

before are no longer applicable.

The second one is the difficulty in correctly

identifying the most suitable metric among many of the

metrics. Due to the very same reason mentioned above it

was hard to select the best and most appropriate metric to

measure the software complexity and comprehend actual

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 47 This work is licensed under Creative Commons Attribution 4.0 International License.

meaning and the benefit behind the measurements.

Another problem is to identify which quality

should be taken into consideration when measuring

software complexity. As a solution for this Wyuker has

introduced 6 different properties that software complexity

metrics should satisfy [11]. According to her observation,

both Halstead’s metrics [3] and Cyclomatic complexity

[4] which are considered a few of the most accepted

complexity metrics worldwide fail to satisfy all these

properties.

With the Object Oriented (OO) concepts came

into light another problem was raised, which is the

scarcity of metrics that measure programs with OO

concepts. Even though there are metrics that already

considered this subject, most of these metrics only

measure a few attributes and elements regarding OO

concepts. This denotes that a single metric will not be

enough to measure all the qualities of object-oriented

program design. The purpose of this research is to

introduce a software metric specifically for software

programs which will cover multiple aspects of Object-

Oriented design. This metric aims to address the above-

mentioned challenges.

On average around 80% - 90% of the annual cost

of the software life cycle would be spent on the software

maintenance phase [12]. There is a fundamental

relationship between software complexity and software

maintenance. With the proper application of software

complexity metric, this huge expenditure on maintenance

can be greatly reduced. With the help of complexity

measures a proper understanding of the quality and the

reliability of software could be enhanced and the proper

controls on complexity will enhance many operations

related to maintenance. [6] [8] [2] [13].

One of the metrics that is concerned with several

features of Object-oriented concepts at a time is Chhillar

and Bhasin's Cognitive Based (CB) Measure named

Weighted Composite Complexity (WCC) Measure [8].

This metric will quantify four factors of a program which

are inheritance, control structure, nesting level, and the

size of the program. In this metric specific weight would

be allocated for the above factors. The objective of this

research will be to introduce and develop a tool named

“Codeplex” based on this WCC alongside improvements

for this. As it suggests enhancing the measure it will be

named after Enhanced Cognitive Based (ECB) Measure.

In summary, this paper will discuss the

importance of software complexity and software metrics

as well as the interrelationship between these metrics and

the maintenance of software as it will suggest a new

method as well as develop a tool based on ECB to

calculate, analyze code, and support decision-making

related to software development phase in the hope of

improving the maintainability and reliability of a software

product.

II. LITERATURE REVIEW

The very first attempt to identify the complexity

of code was Wolverton in 1974 by introducing Line of

Code (LOC) which measures the production ratio of

programmers [13]. In 1976, McCabe introduced

cyclomatic complexity which is a mathematical technique

to identify software complexity based on control flows in

software modules [4]. He introduced a unique name, a

cyclomatic number that represents a maximum number of

linear paths in the control flow in terms of cognitive

weights. These cognitive weights are measured based on

the extent to which the software program is difficult to

comprehend.

In 1977 Halstead introduced another set of

metrics which was also improving LOC [3]. Halstead’s

metrics are used to estimate the size, complexity, and

effort requirement of the software. However, it was later

found out that these metrics have limited scope, limited

applicability, and limited accuracy with the increase of

the complexity of a program. [14]. These metrics will be

based on the number of operators and operands in the

program.

In 1981, Henry Kafura introduced a complexity

measure named fan-in-fan-out where fan-in is the number

of information flowing into a program module and fan-

out is the number of information flowing out of a program

module.

In 1994, Chdamber and Kamerer [5] introduced a

new suite of metrics that is very famous for measuring

the complexity of object-oriented design. This includes 6

different metrics namely:

● Weighted Methods per Class (WMC)

● Depth of Inheritance Tree (DIT)

● Number of children (NOC)

● Coupling between object classes (CBO)

● Response for a Class (RFC)

● Lack of Cohesion in Methods (LCOM)

 In 1997, Another metric by T.Mayer and T.Hall

introduced an improved version of the MOOD metric. It

covers the following factors namely:

● Method Hiding Factor (MHF)

● Attribute Hiding Factor (AHF)

● Method Inheritance Factor (MIF)

● Attribute Inheritance Factor (AIF)

● Polymorphism Factor (PF)

● Coupling Factor (CF)

 In 2000, Etzkom and Delugach [15] introduced

another tool for object-oriented design where complexity

measures are done for the factors such as the class

cohesion, class interface complexity, class overlap. The

metric was named Logical Relatedness of Methods

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 48 This work is licensed under Creative Commons Attribution 4.0 International License.

(LORM). In 2005 Costagliola and Tortura [7] introduced a

functional point- like approach named class point which

also supports estimating the size of Object-oriented

products.

 In 2007 Misra and Sanjay [2] introduced

complexity metrics which is specifically focused on class

in the method level which is an attempt to identify and

evaluate methods of Object-oriented design by considering

the internal architecture of the class.

In 2011, Chhillar and Bhasin introduced the WCC

measure and in 2015, Arbi and Gahazarian [10] introduced

a universal complexity theory called Informational

Volumetric Complexity (IVC).

III. PROPOSED ENHANCED

COGNITIVE BASED COMPLEXITY

MEASURE

According to Chhillar and Bhasin's WCC

measure, different cognitive-based weights are allocated

for four different factors. The weight allocation of WCC is

as follows:

Inheritance Level (Wi): The deeper the

inheritance is, the harder it is to understand. Therefore, it

affects complexity. For the WCC measure, difference

weights will be allocated considering the class level. For

example, Base Class: In the case of a base class, it is

assigned a weight of 0, indicating the lowest complexity

level. First Derived Class from Base Class: When a class is

in first level of derivation from the base class, it is given a

weight of 1, signifying a moderate level of complexity

Second Derived Class: For a class that is two levels deep in

the inheritance hierarchy, it is allocated a weight of 2,

indicating a higher level of complexity.

Types of Control Structures (Wc): A program

with diverse control structures is difficult to comprehend

and different control structures contribute complexity in

different ways. In WCC measures weights will be

allocated considering the type of control structure.

Sequential statements, which represent a linear flow of

code execution, are assigned a weight of 0. Conditional

statements, which introduce decision-making logic into the

code, are allocated a weight of 1. Iterative statements,

responsible for creating loops and repetitive execution,

receive a weight of 2. Switch Cases with n Statements

(Wc): For switch cases with 'n' individual statements

inside, the weight is directly set to 'n.'
Nesting of Control Structures (Wn): A program

with more levels of nesting in the control structure is

difficult to comprehend, thus it will also affect the

program's complexity. Sequential statements are assigned

a weight of 0. Control structures and statements at the

outermost level of nesting are assigned a weight of 1.

Control structures and statements at the innermost levels

of nesting are assigned a weight of 2.

Size (Sj): Since the start of this software

complexity came to be size is also considered one of the

parameters of software complexity. A class with more

methods, operators, and operands are way more difficult to

understand than a simple program with few statements.

Therefore, size is obviously a factor that affects the

complexity. In terms of WCC total number of tokens

(operators, operands, strings, and methods/functions) will

be considered as the weight for the size factor.

By considering the above factors following WCC measure

introduces the following formula to calculate total weight

of the program.

 () ∑()

()

1

Cw (P) = Total weight for the program

Pn = Total number of executable statements in program P,

Wt = Total weight of j
th

 executable statement in program P,

Wt = Wn + Wi + Wc
Except for the above 4 factors, another four

factors will be considered in the introduced ECB measures.

They will be as follows.

Multiple Inheritance: Class with multiple

inheritance will be difficult to comprehend thus

contributing to the complexity of the program. This was

not considered when measuring the complexity in the

WCC metric. In this ECB, additional weight will be

allocated for classes with multiple inheritance. For each

class that is derived from more than one class weight of

one will be allocated to Wi.

Compound Conditional Statements: When it comes to

conditional statements, there are two types namely simple

and compound conditions. In the WCC metric, this point

was not considered. In ECB, additional weight will be

allocated for conditions with compound conditional

statements. For each compound conditional statement, an

additional one unit of weight will be allocated for Wc.

Methods with Multiple Statements: When it

comes to measuring the size of the methods WCC does not

measure the difference between two methods which have a

considerable number of statements than the other. A

function with a greater number of statements with

complicated steps would be more difficult to comprehend

than the simple method with few steps. Therefore, by

considering the number of statements in each method

different weights will be allocated in ECB measure. For a

function with more than 5 statements, an additional 1 unit

of weight will be allocated. For an example method with 5

statements will be given 1 point. The method with 10

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 49 This work is licensed under Creative Commons Attribution 4.0 International License.

statements will be given 2 points. Likewise, additional

tokens will be added to Sj.

Array and Object Declaration: WCC has also not

commented on anything on array and object declaration as

well. Though it might be less complex compared with

other factors it also poses a complexity to the program to a

certain extent. In ECB measure, this will be also

considered when measuring the complexity. An array

declaration will be considered as normal variable

declaration and due to the uniqueness of an array data

structure additional points will be allocated for the Sj. The

object declaration will also be considered the same as a

normal variable declaration which was also not mentioned

in WCC.

IV. EXPERIMENTAL RESULTS AND

DISCUSSION

The main objective of this paper is to

identify the places that can be improved within the

CB measure dons in WCC. As mentioned in the

Section III authors have identified 4 different factors

that can be improved in WCC. Those are multiple

inheritance, array and object declaration, compound

conditional statements and functions with multiple

statements. The weights will be allocated according

to the methodology and a calculation has been done

separately for each WCC and ECB. Table 1, Table 3,

Table 5, Table 7 are examples measured according to

the WCC, and Table 2, Table 4 Table 6, and Table 8

are examples measured according to the ECB.

According to the above-mentioned

methodology, weights will be allocated for

considering the inheritance level of the program.

Additionally, on ECB multiple inheritance will be

considered when measuring the complexity.

Figure 1: Sample program to demonstrate the effect of

Inheritance

Table 1: CB for Result Program for multiple inheritance

Line S Wn Wi Wc Wt S*W

8 2 0 1 0 1 2

9 5 0 1 0 1 5

15 2 0 1 0 1 2

16 5 0 1 0 1 5

22 2 0 2 0 2 4

23 1 0 2 0 2 2

24 1 0 2 0 2 2

28 2 0 0 0 0 0

29 2 0 0 0 0 0

30 3 0 0 0 0 0

31 1 0 0 0 0 0
WCC CB value 22

But in here notice than in Table1, line 9, class

ColoredShape is an example with multiple inheritance. In

WCC this aspect was not considered. But the authors

decided to include this for measuring ECB. The newly

calculated values are listed below. (Table2)

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 50 This work is licensed under Creative Commons Attribution 4.0 International License.

Table 2: ECB for Result Program for multiple inheritance

Line S Wn Wi Wc Wt S*W
8 2 0 1 0 1 2
9 5 0 1 0 1 5
15 2 0 1 0 1 2
16 5 0 1 0 1 5

22 2 0 3 0 3 6

23 1 0 3 0 3 3
24 1 0 3 0 3 3
28 2 0 0 0 0 0
29 2 0 0 0 0 0
30 3 0 0 0 0 0
31 1 0 0 0 0 0
ECB value 26

Assigning a weight of one to control structure

attributes (Wc) whenever the "&&" or "||" operator is used.

The impact of compound situations on programming

intricacy is shown through an example of C++ code

presented in Figure 2. The program's careful design

highlights the complexities of measuring simplicity when

distinct control systems are implemented. Through Tables

3 and Table 4, the subsequent examination presents a

detailed and straightforward depiction of how software

complexity is measured for the code displayed in Figure

2.

Figure 2: Sample program to demonstrate the effect of

compound conditions

Table 3: CB for Result Program for compound conditional

statements

Line S Wn Wi Wc Wt S*W

3 0 0 0 0 0 0

6 2 0 1 0 1 2

7 8 1 1 1 3 24

8 5 1 1 0 2 10

9 0 0 0 0 0 0

10 5 1 1 0 2 10

15 2 0 0 0 0 0

16 2 0 0 0 0 0

17 3 0 0 0 0 0

WCC CB Value 46

Table 4: ECB for Result Program for compound

conditional statements

Line S Wn Wi Wc Wt S*W

3 0 0 0 0 0 0

6 2 0 1 0 1 2

7 8 1 1 2 4 32

8 5 1 1 0 2 10

9 0 0 0 0 0 0

10 5 1 1 0 2 10

15 2 0 0 0 0 0

16 2 0 0 0 0 0

17 3 0 0 0 0 0

ECB Value 54

Complexity that array, and object declarations in

a program bring out. To assess software complexity, it is

crucial to comprehend how these declarations impact

program structure and behavior. This problem is

addressed and a nuanced understanding of program

complexity in realistic software development contexts is

provided by the suggested ECB measure.

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 51 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 3: Sample program to demonstrate the effect of

Object array declaration

Table 5: CB for Result Program for object and array

declaration

Line S Wn Wi Wc Wt S*W

7 2 0 0 0 0 0

11 3 0 1 0 1 3

12 3 0 1 0 1 3

15 4 0 1 0 1 4

16 7 1 1 0 2 14

20 4 0 1 0 1 4

21 4 0 1 0 1 4

22 0 0 1 0 0 0

23 3 0 1 0 1 3

WCC CB Value

35

But here notice that in Table 6, line 21 and 22, an

array and object declaration can be found. In WCC this

aspect was not considered. But authors found those can be

attributed to increasing the code complexity. Therefore,

additional points are allocated in Sj in Table 6.

Table 6: ECB for Result Program for object and array

declaration

Line S Wn Wi Wc Wt S*W

7 2 0 0 0 0 0

11 3 0 1 0 1 3

12 3 0 1 0 1 3

15 4 0 1 0 1 4

16 7 1 1 0 2 14

20 4 0 1 0 1 4

21 5 0 1 0 1 5

22 2 0 1 0 1 2

23 3 0 1 0 1 3

WCC CB Value

38

When considering the Methods with Multiple

Statements feature, the ECB software complexity measure

produces intriguing outcomes. Within methods, different

statement counts lead to cognitive disparities that WCC

does not identify. The introduction of weighting according

to statement count increases ECB calculation. Methods

featuring abundant statements, complex control flow,

logical conditionals, and multiple operations tend to

receive better ECB ratings.

Figure 4: Sample program to demonstrate the effect of

Methods with Multiple Statements

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 52 This work is licensed under Creative Commons Attribution 4.0 International License.

Table 7: CB for Result Program for methods with multiple

statements

Lin

e
S Wn Wi Wc Wt S*W

3 2 0 1 0 1 2

4 4 0 1 0 1 4

5 1 0 1 0 1 4

7 2 0 1 0 1 2

8 4 0 1 0 1 4

9 10 1 1 2 4 40

10 4 1 1 2 4 16

12 1 0 1 0 1 1

16 2 0 0 0 0 0

17 0 0 0 0 0 0

18 4 0 0 0 0 0

19 7 0 1 0 1 7

20 6 0 1 0 1 6

WCC CB Value 86

 But here notice that in Table 7 line 20, class

Complexity Calculator is an example with multiple

statements. In WCC this aspect was not considered and

allocated the same weights for both methods with one and

multiple statements inside. But authors found that methods

with multiple statements might be more complex and

allocated more weight for that. The allocation is done as

one more weight.

Table 8: ECB for Result Program for methods with

multiple statements

Line S Wn Wi Wc Wt S*W

3 2 0 1 0 1 2

4 4 0 1 0 1 4

5 1 0 1 0 1 4

7 2 0 1 0 1 2

8 4 0 1 0 1 4

9 10 1 1 2 4 40

10 4 1 1 2 4 16

12 1 0 1 0 1 1

16 2 0 0 0 0 0

17 0 0 0 0 0 0

18 4 0 0 0 0 0

19 7 0 1 0 1 7

20 7 0 1 0 1 7

ECB Value 87

V. CONCLUSION

In conclusion, our research has resulted in the

development of the Enhanced Cognitive Based (ECB)

measure, a tool made to satisfy the requirements of

developers and technical leads. A more advanced and

enhanced version of the conventional Weighted Code

Complexity (WCC) metric is represented by ECB. It is a

useful asset since it provides increased explanatory power.

Compared to traditional code complexity measures, ECB

provides a higher level of accuracy and dependability based

on object, array declarations, multiple inheritance,

compound conditional statements, methods and multiple

statements.

 Instead of just creating another generic metric

calculator, our aim was to pioneer a revolutionary

approach that addresses the endemic problems in software

engineering. With the ECB measure, we offer a potent

tool that enables professionals to improve the quality and

efficiency of their software development projects,

streamline their coding procedures, and make informed

judgments.

REFERENCES

[1] “Cambridge Dictionary,” Cambridge University,

[Online]. Available:

https://dictionary.cambridge.org/dictionary/englis

h/complexity?q=complexity.. [Accessed 25 08

2023].

[2] Misra Sanjay. (2007). An object irented

complexity metric based on cognitive weights.

6th IEEE International Conference on Cognitive

Informatics.

[3] H.Halstead. (1977). Elements of of software

science.

[4] T.J.McCabe. (1976). A complexity measure.

IEEE Transaction on Software Engineering.

[5] S.R.Chidamber & C.F. Kamerer. (1994). A

metric suite for obect oriented design. IEEE

Transactions on Software Engineering, 20(6), pp.

476-493.

[6] Software structure metrics based on software

engineering. (1981). IEEE Transaction Metrics

Bases on Information Flow, SE-7(5), pp. 510-

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-13, Issue-5 (October 2023)

https://ijemr.vandanapublications.com https://doi.org/10.31033/ijemr.13.5.8

 53 This work is licensed under Creative Commons Attribution 4.0 International License.

518.

[7] G. Costagliola, F. Ferrucci, G. Tortora & G.

Vitiello. (2005). Class point: an approach for the

size estimation of object-oriented systems. IEEE

Transactions on Software Engineering, 31(1), pp.

52-74.

[8] Usha Chhillar & Shuchita Bhasin. (2011). A new

weighted composite complexity measure for

object-oriented systems. International Journal of

Information and Communication Technology

Research.

[9] T. Mayer & T. Hall. (1999). Measuring OO

systems: A critical analysis of the MOOD

metrics. In: Proceedings Technology of Object-

Oriented Languages and Systems. TOOLS 29

(Cat. No.PR00275).

[10] Gahzarian, Arbi. (2015). A theory of software

complexity. In: IEEE/ACM 4th SEMAT

Workshop on a General Theory of Software.

[11] E. Weyuker. (1988). Evaluating software

complexity measures. IEEE Transactions on

Software Engineering, 14, pp. 1357-1365.

[12] A.Kushnir. (2011). “bamboo agile,” Bamboo

Group, 11 10 2011. [Online]. Available:

https://bambooagile.eu/insights/software-

maintenance- costs/. [Accessed 11 10 2023].

[13] Tu Honglei, Sun Wei & Zhang Yanan. (2009).

The research on software metrics and software

complexity metrics. In: International Forum on

Computer Science- Technology and Applications,

Chongqing, China.
[14] Software Engineering | Halstead’s Software

Metrics | GeeksForGeeks, “GeeksForGeeks,” 11

07 2023. [Online]. Available:

https://www.geeksforgeeks.org/software-

engineering-halsteads-software-metrics/.

[Accessed 23 10 2023].

[15] L. Etzkorn & H.Delugach. (2000). Towards a

semantic metrics suite for object-oriented design.

In: 34th International Conference on Technology

of Object-Oriented Languages and Systems.

[16] Dipti Pawade, Devansh J.Dave, & Aniruddha

Kamath. (2016). Exploring software complexity

metric from procedure oriented to object

oriented. In: International Conference - Cloud

System and Big Data Engineering.

[17] R. Harrison, S. Counsell & R. Nithi. (1997). An

overview of object- oriented design metrics. In:

Eighth IEEE International Workshop on

Software Technology and Engineering Practice

incorporating Computer Aided Software

Engineering.

[18] P.Ashok Reddy, Dr.K.Rajasekhara Rao &

Dr.M.Babu Reddy. (2015). Performance

evaluation of procedural metrics and,.

International Journal of Research Studies in

Computer Science and Engineering (IJRSCSE),

2, 69-72.

[19] D. I. De Silva, N. Kodagoda, S. R. Kodituwakku

& A. J. Pinidiyaarachchi. (2015). Improvements

to a complexity metric: CB measure. In: IEEE

10th International Conference on Industrial and

Information Systems (ICIIS), Peradeniya.

[20] D. I. De Silva, N. Kodagoda, S. R. Kodituwakku

& A. J. Pinidiyaarachchi. (2015). Limitations of

an object-oriented metric: Weighted complexity

measure. In: 6th IEEE International Conference

on Software Engineering and, Beijing, China.

[21] D. I. De Silva, N. Kodagoda, S. R. Kodituwakku

& A. J. Pinidiyaarachchi. (2017). Analysis and

enhancements of a cognitive based,. In: IEEE

International Symposium on Information Theory

(ISIT), Aachen, Germany.

[22] D. I. D. Silva. (2016). Analysis of weighted

composite complexity measure. In: International

Conference on Computational Techniques in,

New Delhi, India.

[23] D. I. De Silva, S. R. Kodituwakku, A. J.

Pinidiyaarachchi & N. Kodagoda. (2018).

Enhancements to an OO Metric: CB Measure.

Journal of Software, 13, 72-81.

[24] Hansini M. Fernando, Damith R. Kothalawala,

Dilshan I. De Silva & Nuwan Kodagoda. (2012).

Automated code analyser,. In: Proc. IASTED

International Conference on Engineering and

Alied Science(EAS), Colombo, Sri Lanka.

