
International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 38 This work is licensed under Creative Commons Attribution 4.0 International License.

Make Scale Invariant Feature Transform “Fly” with CUDA

Yuhong Mo
1
, Chaoyi Tan

2
, Chenghao Wang

3
, Hao Qin

4
 and Yushan Dong

5

1
Carnegie Mellon University, Electrical and Computer Engineering, PA, USA
2
Northeastern University, Electrical and Computer Engineering, MA, USA

3
Georgia Institute of Technology, Computer Science, GA, USA

4
Independent, CHINA

5
University of Maryland, Machine Learning, USA

1
Corresponding Author: yuhongmo@cmu.edu

Received: 01-05-2024 Revised: 16-05-2024 Accepted: 05-06-2024

ABSTRACT
This paper introduces an implementation of

scale invariant feature transform (SIFT) algorithm with

CUDA. Primary steps including building the Gaussian

pyramid and the difference of Gaussian pyramid,

identification, localization [1], and orientation generation

of key-points are realized on GPU with CUDA. A

detailed description of important kernel function

implementations is covered along with optimizations

made to achieve high performance, and a comparison

between the CUDA version SIFT algorithm and a

baseline sequential CPU implementation is included.

Keywords-- SIFT, CUDA, P arallelism

I. INTRODUCTION

In computer vision, a common task is to

detect local features from images to match across

images. On the one hand, we want the algorithm to

perform well under image changes such as scaling,

rotation, and different lighting. On the other hand,

due to the increase in the resolution of images and

sometimes the demand for real-time feature extraction

and matching, it is desirable to have a sufficiently fast

implementation.[2]

Therefore, in this project, we parallelize a

classical feature extraction algorithm called scale

invariant feature transform (SIFT). This algorithm has

relatively good effects under affine transforms of

images, noise, and lighting changes. With CUDA, we

exploit GPU computation to accelerate a current CPU-

only implementation.

II. PROCEDURES OVERVIEW

SIFT is a multi-step algorithm[3]. The primary steps

for realizing a SIFT algorithm are listed as follows.

 Building Gaussian Pyramid. With the input

image, we first build a pyramid of images by

down-sampling by two at each time. For each

group of images inside every pyramid level,

its size is half of its previous group. The

number of groups in total is O = log2 (min(M,

N)) − 3 where M and N are the length and

height of the original image, respectively. Inside

each level of the pyramid, we create S copies of

the same size. We then convolute a Gaussian

kernel with each image in the pyramid,

respectively.

 Building Difference of Gaussian Pyramid[4].
After build- ing the Gaussian pyramid, we

calculate the difference between each two

neighboring images at the same level to get the

difference of Gaussian.

 Orientation Generation. We count the

directions of pixels in the neighboring

circle of key-points to determine the

orientation.[6]

In theory, there is one last step to generate key-point

descriptors, but in our discussion, we leave out this step

in both implementations. In the next sections, we discuss

about detailed implementation of the GPU version[7].

III. GENERATION OF GAUSSIAN AND

DIFFERENCE OF GAUSSIAN PYRAMID

The first part generates two pyramids of

images that facilitate key-point identification.[8] The

input image as a float matrix is first transferred to

global memory. It is stored in row-major order. [9] It

is then doubled in height and width with linear

interpolation to be the bottom layer image of the first

level of the Gaussian pyramid.[10] Then the Gaussian

pyramid is built with the following rule: if it is the first

layer in a level,[11] it is produced from the last layer of

the previous level with width and height halved;[12] if it

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 39 This work is licensed under Creative Commons Attribution 4.0 International License.

is not the first layer in a level, it is produced from

its previous layer with a Gaussian blur applied[13]. A

difference of Gaussian pyramid is then built by taking

the difference of neighboring layers inside a level.

We note that size-doubling, size-halving,

taking the difference, and Gaussian blurs are

performed on GPU without data transferring from or

to the CPU[14]. Every produced image is stored in

global memory as a float array, [15] but between

images there is no connection in memory location.

In the following part, we discuss the implementation of

the Gaussian blur kernel, which is the key function of

this part.

The algorithm design finds the convolution

output for this 32x32 brick using one thread block.

Diving deeper into the convolution operation for

2×S+1 filter size, to find the convolution output for

the 32x32 bricks, we need additional S rows/columns on

each side of the 32x32 brick so that we can find the

convolution output for the pixels at the edges. For our

convenience and further discussion, this 32x32 brick

along with S additional rows and columns on each side is

called a Tile. [16] This data in the Tile is used multiple

times to find the convolution output for itself and its

neighbors. Thus, it makes sense to copy the whole tile

into the shared memory and make a Thread Block work

on it since the shared data will be in the memory for all

threads in a Thread Block to use. Thus, our one Thread

Block handles the convolution output for one Tile.[17]

The first thing that the threads do is to copy the

whole of the Tile into the shared memory, which

then can be used for further computation parallelly by

all threads. The exact details of how this is done are

mentioned in Point #3 below. The threads in a block

need to be synchronized for this purpose, and hence we

use __syncthreads() at this point. This ensures that

the convolution operation is only performed when all

the data is copied into the shared memory and no

garbage values are used in the convolution operation.

Once all the data of a Tile resides

Figure 1: Performing Convolution Operation using

threads

in the shared memory, we can proceed with

performing the convolution operation. One thing to

notice is that the Convolution Filter is something

that is shared by the whole input matrix no matter

which Tile we are finding the convolution for. Hence,

it makes sense to cache the Convolution Filter in the

Constant Memory On-Chip Cache[18]. Now for finding

the output, each thread calculates the Convolution output

for one output pixel, which means it iterates over the

Filter sized sub-matrix in a Tile with the output pixel

being at the center, multiplies the Tile values with its

corresponding filter values, and then sums them up for

finding the result for that output pixel. As already

mentioned, each thread finds the output value for one

convolution output. This is shown in Figure 1.

A key feature of the Gaussian Blur, which we

feel contrasts our work to the work of peer teams is that

we did not design our algorithm for only a specific filter

size. This was also a requirement of the SIFT algorithm

which we implemented. Thus, we had to decide what

would be the maximum size of the filter that we would

support. The value that we went ahead with was 71.

The reasoning behind this value is explained in Point #1

below.

1) Determining the Maximum Supported Filter Size

Let us assume the brick size to be 32x32

for now (the rationale of it is presented in the

below point number #2). The maximum shared memory

available to us is 48k bytes. As already explained, the

whole of the Tile needs to reside in the memory. Thus,

4 × (32 + 2 × S) × (32 + 2 × S) < 48k (1)

where S comes from the size of the filter

which is (2 × S + 1) and a multiplicative factor

comes from the size of a Float variable which is the

type of the input to the Gaussian Filter. This

approximately gives us a value of S to be: S < 39 and

restricts the Maximum Filter Size to be less than 79.

Taking a more conservative approach, we empirically

determined the value of the Maximum Filter Size that we

would support would be 71 instead of 77, as the higher

values were running into memory issues even though

theoretically they should not.

2) Determining the Brick Size

The rationale for choosing the brick size to the

specific value of 32x32 instead of any other value is

based on the Maximum Filter Size that we wanted to

support. Had we chosen a brick size of 64x64 or higher,

the size of the tile that would now have to be stored in

the shared memory would have been:

4 × (64 + 2 × S) × (64 + 2 × S) < 48k (2)

which gives the following constraint on the

value of S: S < 23 and restricts the Maximum Filter

Size to be less than 47. This was something that we

did not want to do and we wanted to support

higher filter sizes for our Gaussian blur function.

Hence, we chose the brick size not greater than 32 × 32.

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 40 This work is licensed under Creative Commons Attribution 4.0 International License.

Furthermore, keeping a smaller brick size would have

not allowed us to use more number of threads, and our

parallel computation by using multiple threads could

have been restricted by the brick size itself which

would not have allowed us to use the hardware

resources to the best.

3) Copying the Data into Shared Memory

There are two ways of copying the data into

the shared memory from the device memory since the

value of the Filter Size (2 × S + 1) varies which makes

S a variable. Now depending on the value of S, either we

can keep the total number of threads fixed and then vary

the number of rows that can be copied to the shared

memory, or, we could vary the number of threads

while keeping the number of rows fixed. We

implemented and experimented with both these

approaches and finally chose to make this part of the code

configurable in case anyone is interested in trying out

both approaches themselves. However, based on our

results, there was nothing conclusive that could be reached

about one method being better than the other in terms of

time taken. Additionally, keeping the threads to a constant

number introduced another hyperparameter of the number

of threads that we could use, and again there were no

conclusive results regarding that either. Keeping the

number of threads constant seemed to work well with a

lesser number of threads in the case of smaller images with

smaller filters, whereas with an increase in the image/filter

size (beyond a certain point), having more threads paid off,

and that too the peak performance was observed with a

different number of threads for different combinations

of image sizes and kernel sizes. Additionally, the method

of varying the number of threads by keeping the number of

rows copied consistent seemed to work better than the

above approach for larger images and/or larger filter

sizes. Thus, we chose to go ahead with this

approach.[19]

In spite of having both configurations possible as

a part of our code base, we chose to perform our

experiments on keeping the number of rows fixed and

varying the number of threads on the basis of the size of

the Gaussian filter used to blur the images. The numerical

aspects of it are explained in the point right below (#4).

4) The Number of Threads

As explained in the above point (#3), not having

concrete evidence of one number of threads working well

for different combinations of images and kernel sizes, we

chose to go ahead with using a number of threads that is

dependent on the Gaussian Filter size. To fix the number

of threads we want, we refer to the action of copying

the image to shared memory. For this purpose, let h rows

be copied into shared memory at once and using the fact

that the maximum number of threads in a block is 1024:

(32 + 2 × S) × h < 1024 (3)

But the maximum value of S comes from the

Maximum Filter Size = 71 supported by our kernel, which

gives us h ~ 10 and we chose:

h = 8 (4)

Thus, the number of threads per thread block =

(32 + 2 ×

S) × 8 where S comes from the filter size of (2 × S + 1).

5) The Number of Thread Blocks

Since the image is divided into multiple bricks of

32 × 32 size, each being handled by a Thread Block, the

number of Thread Blocks is the same as the number of

such bricks, which is:

(Image__Width × Image__Height)/(32 × 32) (5)

B. Implementation of Other Kernels

We briefly talk about other unimportant kernels

including size-doubling, size-halving, and taking

difference in this part.

 Size Doubling. For an input image with width

and height, the output image has a size of twice of

width and twice of height. Within each block,

each thread is mapped to a column of input

image. Each block reads lines of the input image

coalescingly and writes the values into shared

memory. After reading data, a patch of input

image is present in shared memory. One thread

then produces 4 outputs which are linear

interpolations of its neighboring pixels, whose

values are in shared memory. Since their

access to shared memory has the same pattern,

no bank conflict within the same warp will

happen. Finally, the outputs are written to the

output array. The thread number per block is set

to be the maximum of 1024.

 Size Halving. This kernel decreases the input

image size by half. Each thread in the block is

mapped to one column of output value. Since

there is no data sharing, a thread simply reads

the desired value in the input image and writes to

the output image. Reading inputs has a stride of

2, and writing to the output is coalescing. The

thread number within each block is also set to be

the maximum value of 1024 to fully utilize a

block.[20]

 Taking Difference. This kernel takes two input

arrays, calculates the difference between

corresponding elements, and writes to the

output. Each thread is mapped to one column

of input and output data. Since there is no

data sharing, each thread simply reads in two

input values, taking their difference, and writes to

the output for each position in a column. Both

reading from the input and writing to the output is

coalecsingly done. The thread number is set to be

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 41 This work is licensed under Creative Commons Attribution 4.0 International License.

the maximum value of 1024, since each thread

uses less than 64 registers.

IV. EXTRACTION OF LOCAL

EXTREMA

The task of this part is to identify and extract

information about extrema from the difference of

Gaussian pyramid.

A. Input

The input of this function are multiple levels of

images. Specifically, within each level, the size of

every image is the same. Between each level, from a

front level to its next level, both the size and width

are halved. The size of images represent the level of

detail of images. Throughout sections 4 and 5, we use

a specific setting with the bottom level having a size of

3840 × 2160, where the size is indicated as width×height.

Note that its size is double the original input image.

Within each level of difference of Gaussian pyramid, a

total of 6 images are produced. There are 8 levels in total

and images within each level have sizes of 3840 × 2160,

1920 × 1080, 960 × 540, 480 × 270, 240 × 135, 120 × 67,

60 × 33, and 30 × 16.

B. Output

The output destination of this function is a pre-

allocated structure (init__feat) in global memory. Inside

this structure, a count variable (initially 0) records the

number of extracted extrema. Several arrays store

necessary information that is required for identifying the

extrema point and future processing, including level

number, image index within the level, coordinates within

the image, and values of the extremum’s neighbors. The

last term is required by later processing. By providing

neighboring information, we avoid accessing global

memory for values inside the pyramid in an irregular

pattern. By storing information in a structure containing

multiple arrays rather than an array containing structures

of many data members, we make the access to the

output by the next stage kernel coalescing.

C. Naive Implementation

To qualify as a local extrema, the pixel’s position

is not at the boundary. Here, boundary points include the

edge positions within an image, and also the first and last

image within a level. A local extrema’s absolute value is

greater than a threshold. If the value is less than 0, it is also

less than the 8 pixels surrounding it within the same image

as well as the 18 pixels that are from the image

before it and the image behind it. If the value is larger

than 0, it is then larger than all its neighbors. Therefore, the

local extrema is calculated in a 3-D manner.[20]

In a naive manner, we let every thread examine a

single pixel. Specifically, each thread block is of size

32×32 (since we want to maximize the number of

threads). Within each kernel call, the thread reads in 3

pixel values: one from the previous image, one from the

current image, and one from the next image. Since access

to its neighbors is needed, three pieces of 32×32 float

shared memory is used to store the value obtained. Then

each thread examines whether the current pixel qualifies

an extrema. If so, it calls an atomic add to count to

preserve a location in the output structure. It then writes

the necessary information and the kernel call is finished.

For every level, one kernel call is used. For every patch

in an image of a level, a block is launched. With

previously specified settings, this implementation runs for

0.0043s on average.

D. Optimization

In order to improve the performance, several

techniques are tried and tested. Here we discuss a few of

them.

1) Improving Memory Reuse: One major drawback of

the previous implementation is that the shared memory

reuse is low. For each thread, the majority of work is

spent on reading from global memory. Since we have

many images inside the same level, an image can both

act as a layer to be examined for extrema and the

comparison image for the next layer. To be clearer, each

thread can sequentially read in pixels from the first

image inside a level to the last image of the level.

Extrema are located and stored along the way. Therefore,

for each image between the first and last image, the

reading-in number reduces from 2 to 1.[20]

We also consider letting each thread process

columns of pixels inside each image instead of one pixel.

Threads within the same warp are still reading coalescing

positions with each loading. As an unjustified choice of

parameters, we let each thread examine thread height=16

pixels inside every image (but actually 18 pixels are loaded

from global memory since the top and bottom pixels are

also needed). We choose the block size to be thread

number=128. In terms of shared memory, after careful

arrangement, a minimum of 2 pieces of thread number ×

(thread height+2) float shared memory are needed, saving

1/3 compared with the naive implementation. Within each

thread, local arrays preserve pixels’ information that is

exiled from shared memory (since other threads will not

need it later) but is needed by the thread itself.[20]

In terms of resource utilization, register

usage includes temporary numbers and 3 local arrays

each of size roughly thread height floats. For a

block, reg- ister numbers are roughly thread

number × (3 ×thread height+other registers). The shared

memory usage is 2×(thread height+2) ×thread number.

With this setting, the runtime is 0.0035s on average.

2) Choosing Right Block Size: The previous change in

code improves memory access but limits the number

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 42 This work is licensed under Creative Commons Attribution 4.0 International License.

of blocks that are launched simultaneously. We improve

work distribution in this part.

We first consider thread number. Ideally, one

block can have at most 1024 threads. For bottom-level

images with large sizes, a large thread number is

reasonable, but for top-level images with smaller sizes,

a large thread number leaves many threads doing no

work. With that consideration, the thread number is

chosen so that it is the minimum of image width and the

default thread number. But for small images, shared

memory is still wasted. Using an empirical approach, the

performance is best when the default thread number is 256.

In terms of the height of the column that each thread

processes (we call it thread height), we want to maximize

hardware resources. Within each SM, there are 1024

hardware threads. We want to use all these threads

without exceeding a total of 64K registers. It turns out

that when the thread height is 6, 64 registers are used by

every thread, which is optimal. Empirical results proved

this idea. With 256 threads in each block and every block

processing 6 pixels (and loading in 8 pixels) in each image,

the runtime is 0.0021s.

3) Using Streams: For each level of difference of Gaus-

sian pyramid, one kernel call is launched. But these calls

are not dependent on each other. With this observation, we

create streams to perform these kernels concurrently. With

streams, the runtime is 0.0019s. The usage of stream

primarily improves the hardware utilization when the

kernel is called on upper levels where the image size

is small.

4) Reducing Atomic Operations: We rely on atomic

operations to update the results. A single thread may

produce multiple outputs, and thus keeping results locally

and writing to the output structure in the end together can

reduce atomic operations. As an experiment, we give each

thread local variables to store one temporary result, so that

the thread can keep the result locally and write to the

output together with a second result. However, as the

possibility of generating a local extremum is rather low

for our case (<1%), a thread is unlikely to find multiple

extrema in a single run. The runtime is worse due to extra

registers that are required to locally store results, which

limits the number of threads that can run concurrently in

one SM.

5) Unrolling: Each thread iterates through columns whose

height is pre-fixed. We specified pragma unroll to perform

loop unrolling. But it is observed from register utilization

that when thread height is set to be small (such as 6 in our

case), the compiler has already performed this trick for us

without explicit pragma.

E. Optimization Results

This part summarizes the performance of the

local extrema extraction function. The result is based

on the average runtime from 50 runs on the input specified

in the previous section. In our final implementation, we

adopt the code with the minimum runtime.

Figure 2: Runtime Results of 5 Implementations

V. KEY-POINT LOCALIZATION AND

ORIENTATION GENERATION

We briefly describe these two parts for

generating detailed information of key-points. We note

that these two parts should be improved if time allowed.

A. Key-Point Localization

The input of this function is the output of

extraction of local extrema. Each thread corresponds to one

preliminary extremum. Using the memory layout described

previously, each thread in the same warp accesses

global memory coalescingly. Using each extremum’s

value and its neigh- bors’ values, this kernel does a one-

step approximation of the pixel’s non-integer position.

The core operation is solving a three-by-three linear system

equation involving discrete approximation of the pixel’s

first and second order derivatives. The output is a structure

similar to its input but with modified array members.

Since some extrema will not qualify after this operation, a

similar atomic add is used when a thread wants to output to

global memory. Since this kernel function costs 26

registers, the thread number is set to be the maximum of

1024. With the same input as section 4, the average

runtime of this function is 0.0015s.

B. Orientation Generation

Based on the output from key-point

localization, this function identifies the orientations of

key-points. It accesses a grid of pixels near it at the

corresponding Gaussian pyramid. For each pixel in the

neighborhood grid, its orientation is estimated by its

local derivative. The number of pixels within each range

of angle is accumulated. For our target pixel at the center,

every angle range that has more pixels falling into, than its

neighboring angle ranges counts as one valid angle

descriptor. Therefore, for each input, many outputs can be

generated.

The input of this function is the output structure of

key- point localization. The output of the function is a

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 43 This work is licensed under Creative Commons Attribution 4.0 International License.

structure containing the count and an array whose

member is a structure similar to OpenCV’s Keypoint

data structure. The difference in data layout is because

no kernels will further refer to the output from here

so that memory coalesce is not needed. Each thread is

mapped to one input key-point. To reduce atomic

operations, local storage al- lows one key-point to be

stored temporarily. Consequently, if two descriptors are

generated, they will be written to output together by one

atomic add. After reducing atomic add operations, the

runtime of this function from the same setting as the

previous part reduces from 12.3ms to 10.2ms.

The primary challenge of this part is that each

thread’s access to the Gaussian pyramid is irregular. The

neighboring range for each pixel is also different

depending on its level and layer, making it difficult to

organize a nice memory access pattern.

VI. EXPERIMENTS

This section shows the overall performance of our

GPU implementation against the baseline implementation.

A. Baseline Code

The baseline code is a CPU-only sequential

implementation of SIFT algorithm with OpenCV. The

complete version of baseline implements SIFT, generation

of key- point descriptor, and key-point matching. For our

purpose, we only care about the SIFT part.

B. Architecture

Both versions of SIFT implementations are tested

on an ECE machine. Specifically, the platform where we

run the code has a CPU Intel Xeon 4208, and a GPU

NVidia Tesla T4. The Tesla T4 GPU is based on Turing

architecture, with 40 streaming multiprocessors (SM)

and 32 warps within each SM.

C. Dataset and Experiment Setting

The original dataset is an image of size 1920 ×

1080 converted into a gray-scale float array. The CPU

version starts with this array and outputs a vector of key-

points. The GPU version first copies the float array

into GPU global memory, generates an array of key-

points, and copies key-points back to the main memory.

But the first and last copies are not counted in the timing

results.

To obtain input data of different sizes, we

resize the original image with linear interpolation. The

generation of input images is not timed in both

implementations. We note that by default, the first

operation that is done with the input image in both

implementations is doubling its size, but in the result part,

we still label the data size as the input image size. For each

size, the program runs for 50 times to reduce error.

D. Results

For a more detailed comparison, the time for

generating the Gaussian pyramid and the difference of

Gaussian pyramid is recorded, and the time for key-point

identification, localization, and orientation generation is

recorded, separately.

We first show the runtime result for generating

the Gaussian pyramid and the difference of Gaussian

pyramid in the following figure. We note that in the GPU

version, the generated pyramids are not copied back to the

CPU.

Figure 3: Runtime Comparison for Pyramid Generation

For the input size 1920 × 1080, the GPU version

code is 20 times faster than the sequential CPU version.

The following figure shows the runtime result for

key-point identification, localization, and orientation

generation. For the input size 1920 × 1080, the GPU

version

Figure 4: Runtime Comparison for Key-point

Generation.

program is 50 times faster than the sequential

version. We combine the two figures to get the runtime

comparison for the complete SIFT procedure.

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 44 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 5: Runtime Comparison for Complete Procedure.

Overall, for the input size 1920 ×1080, the GPU

version is 30 times faster than the sequential version.

VII. CONCLUSION AND FUTURE

WORK

In conclusion, we parallelize the SIFT algorithm

with GPU computation using CUDA. For an input size

of 1920 ×1080, our implementation runs 30 times faster

than the CPU-only sequential version. In terms of

Gaussian blur filter design, we have shown how our

approach of dividing the input image into tiles and

using shared memory helps to reduce memory access

latency and improve the overall performance of the

algorithm. We have also implemented several

optimizations to improve the performance of our local

extrema extraction function.

Yet there are still many things we can do.

Specifically, we list a few below.

 In the generation of Gaussian pyramid, some

kernels (taking the difference, zooming in/out) are

doing very simple work. Ideally, we want to

combine multiple calls of these simple kernels.

On the one hand, it can reduce the number of

kernel calls and therefore reduce the overhead. On

the other hand, it can improve data reuse by

avoiding constantly accessing global memory.

 The last stage of orientation generation exhibits

an ugly pattern of global memory access, and the

loop number inside each thread varies, making

the work highly unbalanced between threads.

Ideally, we should modify previous functions

generating key-points so that in this kernel

call, key-points within the same block are close

to each other and similar in workload.

 For some usage of shared memory (such as in

doubling the image), It is questionable whether

using shared memory brings performance

improvement, or a naive implementation may do a

better job since it costs less resources. Although

this kernel is not important to the overall

performance, experiments regarding this

question remain to be done.

REFERENCES

1. J. Jin, F. Ni, S. Dai, K. Li & B. Hong. (2024).

Enhancing federated semi-supervised learning

with out-of-distribution filtering amidst class

mismatches. Journal of Computer Technology

and Applied Mathematics, 1(1), 100–108.

2. S. Li, Y. Mo & Z. Li. (2022). Automated

pneumonia detection in chest x-ray images using

deep learning model. Innovations in Applied

Engineering and Technology, pp. 1–6.

3. Z. Li, H. Yu, J. Xu, J. Liu & Y. Mo. (2023). Stock

market analysis and prediction using lstm: A case

study on technology stocks. Innovations in

Applied Engineering and Technology, pp. 1–6,

2023.

4. K. Li, P. Xirui, J. Song, B. Hong & J. Wang.

(2024). The application of augmented reality (ar)

in remote work and education. arXiv preprint

arXiv:2404.10579.

5. K. Li, A. Zhu, P. Zhao, J. Song & J. Liu. (2024).

Utilizing deep learning to optimize software

development processes. Journal of Computer

Technology and Applied Mathematics, 1(1), 70-

76.

6. T. Liu, S. Li, Y. Dong, Y. Mo & S. He. (2024).

Spam detection and classification based on

distilbert deep learning algorithm. Applied

Science and Engineering Journal for Advanced

Research, 3(3), 6–10.

7. Y. Mo, H. Qin, Y. Dong, Z. Zhu & Z. Li. (2024).

Large language model (llm) ai text generation

detection based on transformer deep learning

algorithm. International Journal of Engineering

and Management Research, 14(2), 154–159.

8. Y. Mo, S. Li, Y. Dong, Z. Zhu & Z. Li. 92024).

Password complexity prediction based on roberta

algorithm. Applied Science and Engineering

Journal for Advanced Research, 3(3), 1–5.

9. J. Zhang, A. Xiang, Y. Cheng, Q. Yang & L.

Wang. (2024). Research on detection of floating

objects in river and lake based on ai intelligent

image recognition. arXiv preprint

arXiv:2404.06883.

10. J. Song, H. Liu, K. Li, J. Tian & Y. Mo. (2024). A

comprehensive evaluation and comparison of

enhanced learning methods. Academic Journal of

Science and Technology, 10(3), 167–171.

International Journal of Engineering and Management Research Peer Reviewed & Refereed Journal

e-ISSN: 2250-0758 | p-ISSN: 2394-6962 Volume-14, Issue-3 (June 2024)

https://ijemr.vandanapublications.com https://doi.org/10.5281/zenodo.11516606

 45 This work is licensed under Creative Commons Attribution 4.0 International License.

11. A. Zhu, K. Li, T. Wu, P. Zhao & B. Hong. (2024).

Cross-task multi-branch vision transformer for

facial expression and mask wearing classification.

Journal of Computer Technology and Applied

Mathematics, 1(1), 46–53.

12. Li, Huan, Feng Xu & Zheng Lin. (2023). ET-DM:

Text to image via diffusion model with efficient

Transformer. Displays, 80.

13. Lin, Zheng & Feng Xu. (2023). Simulation of

robot automatic control model based on artificial

intelligence algorithm. 2
nd

 International

Conference on Artificial Intelligence and

Autonomous Robot Systems (AIARS).

14. Qiu, Shushan, et al. (2022). Day-ahead optimal

scheduling of power–gas–heating integrated

energy system considering energy routing. Energy

Reports, 8(2022), 1113-1122.

15. Chen, Jinfan, et al. (2023). Stochastic planning of

integrated energy system based on correlation

scenario generation method via Copula function

considering multiple uncertainties in renewable

energy sources and demands. IET Renewable

Power Generation 17(12), 2978-2996.

16. Chen, Jinfan, et al. (2024). Reinforcement

learning based two‐timescale energy management

for energy hub. IET Renewable Power

Generation 18(3), 476-488.

17. Zhan, Rongrong, et al. (2023). Operation strategy

of energy router considering compressed air

energy storage. 4
th

 International Conference on

Advanced Electrical and Energy Systems (AEES).

18. Chen, Jinfan, et al. (2023). Robust optimization

based multi-level coordinated scheduling strategy

for energy hub in spot market. 7
th

 International

Conference on Green Energy and Applications

(ICGEA).

19. Li, Zhuoying, et al. (2024). AD-aligning:

Emulating human-like generalization for

cognitive domain adaptation in deep

learning. arXiv preprint arXiv:2405.09582.

20. Meng, Yinan, et al. (2023). Spring-IMU fusion-

based proprioception for feedback control of soft

manipulators. IEEE/ASME Transactions on

Mechatronics.

