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ABSTRACT 
This paper introduces an implementation of 

scale invariant feature transform (SIFT) algorithm with 

CUDA. Primary  steps  including  building the  Gaussian  

pyramid  and the difference of Gaussian pyramid, 

identification, localization [1], and orientation  generation 

of key-points  are  realized  on GPU with CUDA. A 

detailed description of important kernel function 

implementations is covered along with optimizations 

made to achieve high performance, and a comparison 

between the CUDA version SIFT algorithm and a 

baseline sequential CPU implementation is included. 
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I. INTRODUCTION 
 

In  computer  vision,  a  common  task  is  to  

detect  local features  from  images  to  match  across  

images.  On the one hand, we want the algorithm to 

perform well under image changes such as scaling, 

rotation, and different lighting.  On  the  other  hand,  

due  to  the  increase  in  the resolution of images and 

sometimes the demand for real-time  feature  extraction  

and  matching,  it  is  desirable  to have a sufficiently fast 

implementation.[2] 

Therefore, in this project, we parallelize a 

classical feature extraction algorithm called scale 

invariant feature transform (SIFT). This algorithm has 

relatively good effects under affine transforms of 

images, noise, and lighting changes.  With CUDA, we 

exploit GPU computation to accelerate a current CPU-

only implementation. 

 

II. PROCEDURES OVERVIEW 
 

SIFT is a multi-step algorithm[3]. The primary steps 

for realizing a SIFT algorithm are listed as follows. 

 Building Gaussian Pyramid. With the input  

image, we first build a pyramid of images by 

down-sampling by  two  at  each  time.  For  each  

group  of  images inside  every  pyramid  level,  

its  size  is  half  of  its previous  group.  The  

number  of  groups  in  total  is O  = log2 (min(M, 

N)) − 3 where  M  and  N  are the length and 

height of the original image, respectively. Inside 

each level of the pyramid, we create S copies of 

the same size. We then convolute a Gaussian 

kernel with each image in the pyramid, 

respectively. 

 Building Difference of Gaussian Pyramid[4]. 
After build- ing the Gaussian pyramid, we 

calculate the difference between each two 

neighboring images at the same level to get the 

difference of Gaussian. 

 Orientation Generation. We count  the  

directions  of pixels   in   the   neighboring   

circle of key-points to determine the 

orientation.[6] 

In theory, there is one last step to generate key-point 

descriptors, but in our discussion, we leave out this step 

in both implementations. In the next sections, we discuss 

about detailed implementation of the GPU version[7]. 

 

III. GENERATION OF GAUSSIAN AND 

DIFFERENCE OF GAUSSIAN PYRAMID 
 

The  first  part  generates  two  pyramids  of 

images  that facilitate  key-point  identification.[8]  The  

input  image  as  a float  matrix  is  first  transferred  to  

global  memory.  It is stored in row-major  order. [9] It  

is  then  doubled  in  height and width with linear 

interpolation to be the bottom layer image of the first 

level of the Gaussian pyramid.[10] Then the Gaussian 

pyramid is built with the following rule: if it is the first 

layer in a level,[11] it is produced from the last layer of 

the previous level with width and height halved;[12] if it 
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is  not  the  first  layer  in  a  level,  it  is  produced  from  

its previous layer with a Gaussian blur applied[13]. A 

difference of Gaussian pyramid is then built by taking 

the difference of neighboring layers inside a level. 

We  note  that  size-doubling,  size-halving,  

taking  the difference,  and  Gaussian  blurs  are  

performed  on  GPU without  data  transferring  from  or  

to  the  CPU[14].  Every produced  image  is  stored  in  

global  memory  as  a  float array, [15] but  between  

images  there  is  no  connection  in memory  location.  

In the following part, we discuss the implementation of 

the Gaussian blur kernel, which is the key function of 

this part. 

The algorithm design finds the convolution 

output for this 32x32 brick using one thread block. 

Diving deeper into the convolution operation for 

2×S+1 filter  size,  to  find  the  convolution  output for  

the  32x32 bricks, we need additional S rows/columns on 

each side of the 32x32 brick so that we can find the 

convolution output for the pixels at the edges. For our 

convenience and further discussion, this 32x32 brick 

along with S additional rows and columns on each side is 

called a Tile. [16] This data in the Tile  is  used  multiple  

times  to  find  the  convolution output for itself and its 

neighbors. Thus, it makes sense to copy the whole tile 

into the shared memory and make a Thread Block work 

on it since the shared data will be in the memory for all 

threads in a Thread Block to use. Thus, our one Thread 

Block handles the convolution output for one Tile.[17] 

The first thing that the threads do is to copy the 

whole of the  Tile  into  the  shared  memory,  which  

then  can  be used for further computation parallelly by 

all threads. The exact details of how this is done are 

mentioned in Point #3 below. The threads in a block 

need to be synchronized for this purpose,  and  hence  we  

use __syncthreads()  at this  point.  This  ensures  that  

the  convolution  operation is  only  performed  when  all  

the  data  is  copied  into  the shared  memory  and  no  

garbage  values  are  used  in  the convolution operation. 

Once all the data of a Tile resides 
 

 
Figure 1: Performing Convolution Operation using 

threads 

 

in the  shared  memory, we  can  proceed  with  

performing the  convolution  operation.  One  thing  to  

notice  is  that the  Convolution  Filter  is  something  

that  is  shared  by the  whole  input  matrix  no  matter  

which  Tile  we  are finding the convolution for. Hence, 

it makes sense to cache the Convolution Filter in the 

Constant Memory On-Chip Cache[18]. Now for finding 

the output, each thread calculates the Convolution output 

for one output pixel, which means it iterates over the 

Filter sized sub-matrix in a Tile with the output pixel 

being at the center, multiplies the Tile values with its 

corresponding filter values, and then sums them up for 

finding the result for that output pixel. As already 

mentioned, each thread finds the output value for one 

convolution output. This is shown in Figure 1. 

A key feature of the Gaussian Blur, which we 

feel contrasts our work to the work of peer teams is that 

we did not design our algorithm for only a specific filter 

size. This was also a requirement of the SIFT algorithm 

which we implemented. Thus, we had to decide what 

would be the maximum size of the filter  that we would  

support.  The value that  we  went  ahead  with  was  71.  

The reasoning behind this value is explained in Point #1 

below. 

1) Determining the Maximum Supported Filter Size  

Let  us  assume  the  brick  size  to  be  32x32  

for  now  (the rationale  of  it  is  presented  in  the  

below  point  number #2). The maximum shared memory 

available to us is 48k bytes. As already explained, the 

whole of the Tile needs to reside in the memory. Thus, 

4 × (32 + 2 × S) × (32 + 2 × S) < 48k             (1) 

where  S  comes  from  the  size  of the  filter  

which  is  (2 × S + 1)  and  a  multiplicative  factor  

comes  from  the  size of a Float variable which is the 

type of the input to the Gaussian Filter. This 

approximately gives us a value of S to be:  S < 39 and 

restricts the Maximum Filter Size to be less than 79. 

Taking a more conservative approach, we empirically 

determined the value of the Maximum Filter Size that we 

would support would be 71 instead of 77, as the higher 

values were running into memory issues even though 

theoretically they should not. 

2) Determining the Brick Size 

The rationale for choosing the brick size to the  

specific  value  of 32x32  instead of any other value is 

based on the Maximum Filter Size that we wanted to 

support. Had we chosen a brick size of 64x64 or higher, 

the size of the tile that would now have to be stored in 

the shared memory would have been: 

4 × (64 + 2 × S) × (64 + 2 × S) < 48k             (2) 

which  gives  the  following  constraint  on  the  

value  of  S: S < 23 and restricts the Maximum Filter 

Size to be less than  47.  This  was  something  that  we  

did  not  want  to do  and  we  wanted  to  support  

higher  filter  sizes  for  our Gaussian  blur  function.  

Hence, we chose the brick size not greater than 32 × 32. 
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Furthermore, keeping a smaller brick size would have 

not allowed us to use more number of threads, and our 

parallel computation by using multiple threads could 

have been restricted by the brick size itself which  

would  not  have  allowed  us  to  use  the  hardware 

resources to the best. 

3)  Copying the Data into Shared Memory 

There  are two  ways  of  copying  the  data  into  

the  shared  memory from  the  device  memory  since  the  

value  of  the  Filter Size  (2 × S + 1)  varies  which  makes  

S  a  variable.  Now depending on the value of S, either we 

can keep the total number of threads fixed and then vary 

the number of rows that  can  be  copied  to the  shared  

memory,  or, we  could vary  the  number  of  threads  

while  keeping  the  number of  rows  fixed.  We  

implemented  and  experimented  with both these 

approaches and finally chose to make this part of the  code  

configurable  in  case  anyone  is  interested  in trying  out  

both  approaches themselves.  However, based on our 

results, there was nothing conclusive that could be reached 

about one method being better than the other in terms of 

time taken. Additionally, keeping the threads to a constant 

number introduced another hyperparameter of the number 

of threads that we could use, and again there were no 

conclusive results regarding that either. Keeping the 

number of threads constant seemed to work well with a 

lesser number of threads in the case of smaller images with 

smaller filters, whereas with an increase in the image/filter 

size (beyond a certain point), having more threads paid off, 

and that too the peak performance was observed with a 

different  number  of threads  for  different  combinations 

of image sizes and kernel sizes. Additionally, the method 

of varying the number of threads by keeping the number of 

rows copied consistent seemed to work better than the 

above approach for larger images and/or larger filter 

sizes. Thus, we chose to go ahead with this 

approach.[19] 

In spite of having both configurations possible as 

a part of our code base, we chose to perform our 

experiments on keeping the number of rows fixed and 

varying the number of threads on the basis of the size of 

the Gaussian filter used to blur the images. The numerical 

aspects of it are explained in the point right below (#4). 

4) The Number of Threads 

As explained in the above point (#3), not having 

concrete evidence of one number of threads working well 

for different combinations of images and kernel sizes, we 

chose to go ahead with using a number of threads that is 

dependent on the Gaussian Filter size. To  fix  the  number  

of threads  we  want,  we  refer  to  the action of copying 

the image to shared memory. For this purpose, let h rows 

be copied into shared memory at once and using the fact 

that the maximum number of threads in a block is 1024: 

(32 + 2 × S) × h < 1024                         (3) 

But the maximum value of S comes from the 

Maximum Filter Size = 71 supported by our kernel, which 

gives us h ~ 10 and we chose: 

h = 8                                          (4) 

Thus, the number of threads per thread block = 

(32 + 2 × 

S) × 8 where S comes from the filter size of (2 × S + 1). 

5) The Number of Thread Blocks 

Since the image is divided into multiple bricks of 

32 × 32  size,  each  being handled by a Thread Block, the 

number of Thread Blocks is the same as the number of 

such bricks, which is: 

(Image__Width × Image__Height)/(32 × 32)     (5) 

B.  Implementation of Other Kernels 

We briefly talk about other unimportant kernels 

including size-doubling, size-halving, and taking 

difference  in this part. 

 Size Doubling.  For an input image with width  

and height, the output image has a size of twice of 

width and twice of height. Within each block, 

each thread is mapped to a column of input  

image.  Each  block reads lines of the input image 

coalescingly and writes the values  into  shared  

memory.  After reading data, a patch of input 

image is present in shared memory. One thread 

then produces 4 outputs which are linear 

interpolations of its neighboring pixels, whose 

values are  in  shared  memory.  Since  their  

access  to  shared memory has the same pattern, 

no bank conflict within the same warp will 

happen. Finally, the outputs are written to the 

output array. The thread number per block is set 

to be the maximum of 1024. 

 Size Halving. This kernel decreases the input 

image size by half. Each thread in the block is 

mapped to one  column  of output value.  Since 

there  is  no  data sharing, a thread simply reads 

the desired value in the input image and writes to 

the output image. Reading inputs  has  a  stride  of 

2,  and writing to the  output is coalescing. The 

thread number within each block is also set to be 

the maximum value of 1024 to fully utilize a 

block.[20] 

 Taking Difference.  This  kernel  takes  two  input  

arrays, calculates the difference between 

corresponding elements,  and  writes  to  the  

output.  Each  thread  is mapped  to  one  column  

of  input  and  output  data. Since there  is  no  

data  sharing,  each  thread  simply reads in two 

input values, taking their difference, and writes to 

the output for each position in a column. Both 

reading from the input and writing to the output is 

coalecsingly done. The thread number is set to be 
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the maximum value of 1024, since each thread 

uses less than 64 registers. 

 

IV. EXTRACTION OF LOCAL 

EXTREMA 
 

The task of this part  is to  identify  and extract  

information  about  extrema  from  the  difference  of  

Gaussian pyramid. 

A.  Input 

The input of this function are multiple levels of 

images. Specifically,  within  each  level,  the  size  of  

every  image is  the  same.  Between  each  level,  from  a  

front  level  to its  next  level,  both  the  size  and  width  

are  halved.  The size  of  images  represent  the  level  of  

detail  of  images. Throughout  sections  4  and  5,  we  use  

a  specific  setting with the bottom level having a size of 

3840 × 2160, where the size is indicated as width×height. 

Note that its size is  double the  original  input  image. 

Within  each  level of difference  of  Gaussian  pyramid,  a  

total  of 6  images  are produced. There are  8 levels in total 

and images within each level have sizes of 3840 × 2160, 

1920 × 1080, 960 × 540, 480 × 270, 240 × 135,  120 × 67, 

60 × 33, and 30 × 16. 

B.  Output 

The output destination of this function is a pre-

allocated structure  (init__feat) in global memory. Inside 

this structure, a count variable  (initially 0) records the 

number of extracted  extrema.  Several arrays  store  

necessary  information that is required for identifying the 

extrema point and future processing, including level 

number, image index within the level, coordinates within 

the image, and values of the extremum’s neighbors. The 

last term is required by later  processing.  By  providing  

neighboring  information, we  avoid  accessing  global  

memory  for  values  inside  the pyramid  in  an  irregular 

pattern.  By  storing  information in a structure containing 

multiple arrays rather than an array  containing  structures  

of  many  data  members,  we make the  access to the  

output  by the  next  stage  kernel coalescing. 

C.  Naive Implementation 

To qualify as a local extrema, the pixel’s  position  

is not at the boundary. Here, boundary points include the 

edge positions within an image, and also the first and last 

image within a level. A local extrema’s absolute value is 

greater than a threshold. If the value is less than 0, it is also 

less than the 8 pixels surrounding it within the same image  

as  well  as  the  18  pixels  that  are  from  the  image 

before  it  and the  image behind  it. If the value  is  larger 

than 0, it is then larger than all its neighbors. Therefore, the 

local extrema is calculated in a 3-D manner.[20] 

In a naive manner, we let every thread examine a 

single pixel. Specifically, each thread block is of size 

32×32 (since we want  to  maximize  the  number  of  

threads).  Within each kernel call, the thread  reads  in  3  

pixel values:  one from the previous image, one from the 

current image, and one from the next image. Since access 

to its neighbors is needed, three pieces of 32×32 float 

shared memory is used to store the value obtained. Then 

each thread examines whether  the  current  pixel  qualifies  

an  extrema.  If so, it calls an atomic add to count to 

preserve a location in the output structure. It then writes 

the necessary information and the kernel call is finished. 

For every level, one kernel call  is  used.  For  every  patch  

in  an  image  of  a  level,  a block is launched. With 

previously specified settings, this implementation runs for 

0.0043s on average. 

D.  Optimization 

In order to improve the performance, several 

techniques are tried and tested. Here we discuss a few of 

them. 

1)  Improving Memory Reuse: One major  drawback of 

the previous implementation is that the shared memory 

reuse  is  low.  For  each  thread,  the  majority  of  work  is 

spent on reading from global memory. Since we have 

many images  inside  the  same  level,  an  image  can  both  

act  as a layer to be examined for extrema and the 

comparison image for the next layer. To be clearer, each 

thread can sequentially read  in  pixels  from  the  first  

image  inside  a level to the last image of the level. 

Extrema are located and stored along the way. Therefore, 

for each image between the  first  and  last  image,  the  

reading-in  number  reduces from 2 to 1.[20] 

We also consider letting each thread process  

columns of pixels inside each image instead of one pixel. 

Threads within the same warp are still reading coalescing 

positions with each loading. As an unjustified choice of 

parameters, we let each thread examine thread height=16 

pixels inside every image (but actually 18 pixels are loaded 

from global memory since the top and bottom pixels are 

also needed). We  choose  the  block  size  to  be  thread  

number=128.  In terms  of  shared  memory,  after  careful  

arrangement,  a minimum of 2 pieces of thread number × 

(thread height+2) float shared memory are needed, saving 

1/3 compared with the naive implementation. Within each 

thread, local arrays preserve  pixels’  information  that  is  

exiled  from  shared memory (since other threads will not 

need it later) but is needed by the thread itself.[20] 

In   terms   of  resource   utilization,   register   

usage   includes  temporary  numbers  and  3  local  arrays  

each  of size   roughly   thread   height   floats.   For   a   

block,   reg- ister   numbers   are   roughly   thread   

number × (3 ×thread height+other  registers).  The  shared  

memory  usage  is 2×(thread height+2) ×thread number. 

With this setting, the runtime is 0.0035s on average. 

2)  Choosing Right Block Size:  The previous change in 

code  improves  memory  access  but  limits  the  number  
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of blocks that are launched simultaneously. We improve 

work distribution in this part. 

We first consider thread  number.  Ideally, one  

block can have at most  1024 threads. For bottom-level 

images with large sizes, a large thread number is 

reasonable, but for  top-level  images  with  smaller  sizes,  

a  large  thread number  leaves  many  threads  doing  no  

work.  With  that consideration, the thread number is 

chosen so that it is the minimum of image width and the 

default thread number. But for small images, shared 

memory is still wasted. Using an empirical approach, the 

performance is best when the default thread number is 256. 

In terms of the height of the column that each thread 

processes (we call it thread height), we want to maximize 

hardware  resources.  Within  each  SM,  there  are   1024 

hardware  threads.  We  want  to  use  all  these  threads 

without  exceeding  a total  of 64K  registers.  It turns  out 

that when the thread height is 6, 64 registers are used by 

every thread, which is optimal. Empirical results proved 

this idea. With 256 threads in each block and every block 

processing 6 pixels (and loading in 8 pixels) in each image, 

the runtime is 0.0021s. 

3)  Using Streams:  For each level of difference of Gaus- 

sian pyramid, one kernel call is launched. But these calls 

are not dependent on each other. With this observation, we 

create streams to perform these kernels concurrently. With 

streams, the runtime is 0.0019s. The usage of stream 

primarily  improves  the  hardware  utilization  when  the 

kernel  is  called  on  upper  levels  where  the  image  size  

is small. 

4)  Reducing Atomic Operations:  We rely on atomic 

operations  to  update  the  results.  A  single  thread  may 

produce multiple outputs, and thus keeping results locally 

and writing to the output structure in the end together can 

reduce atomic operations. As an experiment, we give each 

thread local variables to store one temporary result, so that 

the thread can keep the result locally and write to the 

output together with a second result. However, as the 

possibility of generating  a  local  extremum  is  rather  low 

for our case (<1%), a thread is unlikely to find multiple 

extrema in a single run. The runtime is worse due to extra 

registers that are required to locally store results, which 

limits the number of threads that can run concurrently in 

one SM. 

5)  Unrolling: Each thread iterates through columns whose 

height is pre-fixed. We specified pragma unroll to perform 

loop unrolling.  But it is observed from register utilization 

that when thread height is set to be small (such as 6 in our 

case), the compiler has already performed this trick for us 

without explicit pragma. 

E. Optimization Results 

This part  summarizes  the  performance  of  the  

local extrema  extraction  function.  The  result  is  based  

on the average runtime from 50 runs on the input specified 

in the previous section. In our final implementation, we 

adopt the code with the minimum runtime. 

 

 
Figure 2: Runtime Results of 5 Implementations 

 

V. KEY-POINT LOCALIZATION AND 

ORIENTATION GENERATION 
 

We briefly describe these two parts for  

generating detailed  information  of  key-points.  We  note  

that  these two parts should be improved if time allowed. 

A.  Key-Point Localization 

The input of this function is the output of 

extraction of local extrema. Each thread corresponds to one 

preliminary extremum. Using the memory layout described 

previously, each  thread  in  the  same  warp  accesses  

global  memory coalescingly. Using each extremum’s 

value and its neigh- bors’ values, this kernel  does  a  one-

step  approximation of the pixel’s non-integer position. 

The core operation is solving a three-by-three linear system 

equation involving discrete approximation of the pixel’s 

first and second order derivatives. The output is a structure 

similar to its input but  with  modified  array  members.  

Since  some  extrema will not qualify after this operation, a 

similar atomic add is used when a thread wants to output to 

global memory. Since this kernel  function  costs  26  

registers,  the  thread number is set to be the maximum of 

1024. With the same input as section 4, the average 

runtime of this function is 0.0015s. 

B.  Orientation Generation 

Based  on  the  output  from  key-point  

localization,  this function  identifies  the  orientations  of  

key-points.  It accesses a grid  of  pixels   near   it   at  the   

corresponding Gaussian  pyramid.  For  each  pixel  in  the  

neighborhood grid,  its orientation  is  estimated  by  its  

local  derivative. The number of pixels within each range 

of angle is accumulated. For our target pixel at the center, 

every angle range that has more pixels falling into, than its 

neighboring angle ranges counts as one valid angle 

descriptor. Therefore, for each input, many outputs can be 

generated. 

The input of this function is the output structure of 

key- point localization. The output of the function is a 
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structure containing  the  count  and  an  array  whose  

member  is  a structure  similar to  OpenCV’s  Keypoint  

data  structure. The  difference  in  data  layout  is  because  

no  kernels  will further  refer  to  the  output  from  here  

so  that  memory coalesce is not needed. Each thread is 

mapped to one input key-point. To reduce atomic 

operations, local storage al- lows one key-point to be 

stored temporarily. Consequently, if two descriptors are 

generated, they will be written to output together by one 

atomic add. After reducing atomic add  operations,  the  

runtime  of  this  function  from  the same  setting  as  the  

previous  part  reduces  from  12.3ms to 10.2ms. 

The primary challenge of this part is that each 

thread’s access to the Gaussian  pyramid  is  irregular.  The 

neighboring range for each pixel is also different 

depending on its level and layer, making it difficult to 

organize a nice memory access pattern. 

 

VI. EXPERIMENTS 
 

This section shows the overall performance of our 

GPU implementation against the baseline implementation. 

A.  Baseline Code 

The baseline code is a CPU-only sequential 

implementation of SIFT algorithm with OpenCV. The 

complete version of baseline implements SIFT,  generation  

of key- point descriptor, and key-point matching. For our 

purpose, we only care about the SIFT part. 

B.  Architecture 

Both versions of SIFT implementations are tested 

on an ECE machine. Specifically, the platform where we 

run the code has a CPU Intel Xeon 4208, and a GPU 

NVidia Tesla T4. The Tesla T4 GPU is based on Turing 

architecture, with 40  streaming  multiprocessors  (SM)  

and  32  warps within each SM. 

C.  Dataset and Experiment Setting 

The original dataset is an image of size 1920  × 

1080 converted into a gray-scale float array. The CPU 

version starts with this array and outputs a vector of key-

points. The  GPU  version  first  copies  the  float  array  

into  GPU global  memory,  generates  an  array  of  key-

points, and copies key-points back to the main memory. 

But the first and last copies are not counted in the timing 

results. 

To  obtain  input  data  of different  sizes,  we  

resize  the original  image  with  linear  interpolation.  The  

generation of input images is not timed in both 

implementations. We note that by default, the first 

operation that is done with the input image in both 

implementations is doubling its size, but in the result part, 

we still label the data size as the input image size. For each 

size, the program runs for 50 times to reduce error. 

 

 

D.  Results 

For a more detailed comparison, the time for 

generating the Gaussian pyramid and the difference  of  

Gaussian pyramid is recorded, and the time for key-point 

identification, localization, and orientation generation is 

recorded, separately. 

We first show the runtime result for generating  

the Gaussian pyramid and the difference of Gaussian 

pyramid in the following figure. We note that in the GPU 

version, the generated pyramids are not copied back to the 

CPU. 

 

 
Figure 3:   Runtime Comparison for Pyramid Generation 

 

For the input size 1920 × 1080, the GPU version 

code is 20 times faster than the sequential CPU version. 

The following figure shows the runtime result for 

key-point identification, localization, and orientation 

generation. For the input size 1920 × 1080, the GPU  

version  
 

 
 

Figure 4:   Runtime Comparison for Key-point 

Generation. 

 

program is 50 times faster than the sequential 

version. We combine the two figures to get the runtime 

comparison for the complete SIFT procedure. 

 



International Journal of Engineering and Management Research                           Peer Reviewed & Refereed Journal 

e-ISSN: 2250-0758 | p-ISSN: 2394-6962                                                                    Volume-14, Issue-3 (June 2024) 

https://ijemr.vandanapublications.com                                                          https://doi.org/10.5281/zenodo.11516606 

 

  44 This work is licensed under Creative Commons Attribution 4.0 International License. 

 

 
 

Figure 5:   Runtime Comparison for Complete Procedure. 

 

Overall, for the input size 1920 ×1080, the GPU 

version is 30 times faster than the sequential version. 

 

VII. CONCLUSION AND FUTURE 

WORK 
 

In conclusion, we parallelize the  SIFT  algorithm 

with GPU  computation  using  CUDA.  For  an  input  size  

of 1920 ×1080, our implementation runs 30 times faster 

than the  CPU-only  sequential  version.  In  terms  of  

Gaussian blur  filter  design,  we  have  shown  how  our  

approach  of dividing  the   input  image  into  tiles   and  

using  shared memory   helps  to   reduce   memory   access   

latency   and improve  the  overall  performance  of  the  

algorithm.  We have also implemented several  

optimizations  to  improve the performance of our local 

extrema extraction function. 

Yet there are still many things we can do. 

Specifically, we list a few below. 

 In the generation of Gaussian pyramid, some 

kernels (taking the difference, zooming in/out) are 

doing very simple  work.  Ideally,  we  want  to  

combine  multiple calls of these simple kernels. 

On the one hand, it can reduce the number of 

kernel calls and therefore reduce the overhead. On 

the other hand, it can improve data reuse by 

avoiding constantly accessing global memory. 

 The  last stage of orientation generation exhibits 

an ugly pattern of global memory access, and the 

loop number  inside  each thread varies,  making 

the work highly unbalanced between threads. 

Ideally, we should modify  previous  functions  

generating  key-points  so that  in  this  kernel  

call,  key-points  within  the  same block are close 

to each other and similar in workload. 

 For some usage of shared memory (such as in 

doubling the image), It is questionable whether  

using  shared memory brings performance 

improvement, or a naive implementation may do a 

better job since it costs less resources.  Although  

this  kernel  is  not  important  to the  overall  

performance,  experiments  regarding this 

question remain to be done. 
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