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ABSTRACT 
With the advancement of the Internet of Things 

(IoT)-based water conservation computerization, 

hydrological data is increasingly enriched. Considering 

the ability of deep learning on complex features 

extraction, we proposed a flood process forecasting model 

based on Convolution Neural Network(CNN) with two-

dimension(2D) convolutional operation. At first, we 

imported the spatial-temporal rainfall features of the 

Xixian basin. Subsequently, extensive experiments were 

carried out to determine the optimal hyper parameters of 

the proposed CNN flood forecasting model. 
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Spatial-Temporal Feature, Geographical Feature 

 

 

I. INTRODUCTION 
 

Flood disasters usually result in a large number 

of casualties and property losses. According to statistics, 

a 40% loss of the world economy is attributed to the 

flood and its secondary disasters, Ruslan, Zain, Adnan 

and Samad (2012).The accurate prediction of the flood-

forming process is therefore crucial to public safety and 

to the assets of René, Djordjevi, Butler, Mark, Henonin, 

Eisum and Madsen (2018). As a result, countries around 

the world have invested a lot of manpower and financial 

resources to improve the flood forecasting capability of 

Cloke and Pappen-Berger (2009).The technology of the 

Internet of Things (IoT) and Cyber-Physical Systems 

(CPS) have absorbed many research interests recently. 

IoT is widely used in flood monitoring, forecasting, and 

management. In China, I proposed a basic framework 

based on IoT for water conservancy.  Over 1,000 people 

shared their flood-related experiences with the author. 

The author wishes to share his findings with the flood 

researchers at the conference. I amended this article on 

February 15, 2019, to remove references to ‘smart 

watches’ and “smart meters’. 

 

 
Figure 1: The basic framework of water conservancy information Yang(2009) 

 

Let the IoT technology and help can monitor 

hydrological data to prevent flood disasters. Application 

of a computer network could reduce the labor cost, 

alleviate the time complexity for real-time acquisition, 

improve the efficiency for water conservancy 

information sharing and processing. Prediction of floods 

has been a hot topic since ancient times. However, the 

formation of the flooding process is a complex nonlinear 

process a variety of factors affects it. 

Experts and scholars have contributed a lot of 

efforts before to reduce the loss caused by a flood. 

Traditional hydrological forecasting model and data-

driven hydrology forecasting model. Sherman et al. 

proposed the unit hydrograph theory in 1932 to study the 

relationship between rainfall and stream flow. Hu and 

Wang (2010), proposed a rain-runoff model - the XAJ 

model, which has been widely applied in humid and sub-

humid areas. Beven and Kirkby proposed the TOP 

MODEL (Top Graph-based Hydrological MODEL) 

MODEL in 1979. 

Todini and Ciarapica (2001). It is a method 

based on the combination of kinematics and basin 

topography, which is widely used in regions without 

data. Morris developed an IHDM(Institute of Hydrology 

Distributed Model) Beven, Calver, and Morris ( 1987) in 

1980. 
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The traditional hydrological forecasting model 

still absorbs many efforts that analyze the principle of 

flood formation. Yangbo Chen et al. proposed a 

physically based flood forecasting model named Liuxihe 

model in 2011. Charles Luo proposed the coastal fall 

flood ensemble estimation(COFFEE) model in 2018 for 

real timed flood forecasting for the coastal dominated 

watersheds in British Columbia during the fall-winter 

season. There are many parameters in these models 

which usually need artificial calibration. If the mapping 

relationship is studied directly from the data, the 

artificial calibration of parameters can be avoided, the 

efficiency of prediction can be improved, and the labor 

cost can be reduced. 

Artificial Neural Network(ANN) has been 

widely used in the field of flood prediction because of its 

good performance in solving nonlinear problems. Some 

experts and scholars have designed a large number of 

data-driven flood prediction models. Ji Youn Sung et al. 

built flood forecasting models with lead times of 1, 2, and 

3 hours respectively by using three-layer ANN.  Adnan, 

Ruslan, Samad and Zain (2013) introduced Kalman filter 

to correct the output of ANN.  Tan guanghua and Liu 

(2002) introduced the adaptive backward propagation 

algorithm into the one-step flood prediction model. 

With the brilliant success of deep learning 

network in computer vision, natural language processing, 

and speech, some scholars introduced some algorithms 

and methods rely on deep learning to flood prediction 

task. Using dynamic attention mechanism and LSTM 

method to establish the model, the model has a high 

accuracy for large river basins, but the input of the model 

is only rainfall and flow, without considering 

geographical factors. The results will change after each 

tracing. So it is necessary to run the average multiple 

times to get the best results. The current model is not 

suitable for complex river bashes. It uses a traditional 

machine learning model based on support vector 

regression (SVR) and BP neural network. 

The traditional model requires a lot of 

parameters to be calibrated and the data-driven model 

cannot predict the flood pro- ness. In this paper, we 

introduced the 2D convolutional operation into the field 

of flood forecasting. We fuse spatial-temporal distribution 

features of rainfall, geographical features, and trend 

features by the ability of Convolutional Neural 

Network(CNN) on complex feature extraction. The 

numerical results show that the model proposed in this 

paper meets the requirements of flood forecasts. 

1) We proposed a novel flood process forecasting model 

based on CNN which can consider rainfall spatial-

temporal feature, geographical feature and trend feature. 

2) A new way of thinking to add more features into flood 

forecasting model by basin gridding was proposed in this 

paper. 

3) We conducted extensive experiments on the proposed 

model, including the correlated analysis and the deter- 

mining of hyper parameters of the model. 

The flood forecasting model by using CNN 

based on IoT was demonstrated in section 3. In section 4 

extensive experiments were used to determine the better 

hyper-parameters of the proposed model and we tested 

the result. I will put the specific explanation in the part of 

related work. I introduced the study area and data 

processing in sections 2 and 3.2.   

 

II. RELATED WORK 
 

CNN has been widely used in the field of 

computer vision because of its sparse connection and 

parameter sharing. Yann LeCun et al. firstly introduced 

the convolutional operation into neural network and 

proposed the famous LeNet-5 model in 1998. In the same 

year, Google team proposed GoogLeNet Szegedy, Liu, 

Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and 

Rabinovich (2015) and won the first prize in 

ILSVRC2014. Based on these backbone networks, many 

excellent models and algorithms have emerged in the 

fields of image classification, detection, semantic 

segmentation and tracking.  Backbone networks can be 

used to train computers to recognize objects in images. 

For more information, please visit: http://www.com.In 

recent years, some researchers began to apply CNN to the 

field of time series prediction, such as solar energy 

prediction, power load prediction and so on.  The reason 

for convolutional neural network can also perform well in 

time series prediction is that it can extract the implied 

repeating patterns from the time series;  On the other 

hand, convolution operation can automatically extract 

features from data without additional feature engineering 

and prior knowledge; In addition, in terms of noisy time 

series, convolutional neural network can also eliminate 

noise in data and extract useful features by constructing 

hierarchical features Koprinska, Wu and Wang (2018). 

Irena Koprinska et al. proposed an energy time 

series prediction model based on CNN with two 

convolutional layers and two full connections layers. 

Shaojie Bai and his colleagues proposed a Temporal 

Convolutional Network (TCN) architecture to address the 

problem of information leakage from future through 1D 

causal convolution. Qian K, Mohamed A, Claudel's Kun 

Qian and Claudel ( 2019) work boost the computational 

speed of a physics-based 2-D urban flood prediction 

method, governed by the Shallow Water Equation (SWE). 

CNN is used to recover the dynamics of the 2D SWE. 

Zhao, Pang, Xu, Peng, and Zuo (2020) proposed 

to use two CNN networks to forecast floods, SCNN and 

LeNet-5. Time series prediction methods based on CNN 

all use the 1D convolutional operation to study the trend 

of the time series, instead of considering additional 

features such as rainfall, topography, vegetation, and soil. 

They propose a flood process forecasting model that can 

fuse rainfall spatial, temporal feature, geographical 

feature, and geographical features. The eight synthetic 

hydrographs at each of the upstream points input and I 

predict the flood according to the relationship between 
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water level and flow. They use point-based array-based and imaged based strategies. 

 

 
Figure  2:  Distribution  map  of  the  rainfall  and  hydrological  stations  in  Xixian  Basin  where  Xixian  Hydrological  

Station  is on the right-most side of the map 

 

 
Figure 3:  A geographic map with digital elevations of different hydrological stations in Xixian Basin. trend feature 

 

III. METHODS 
 

3.1 Study Area and Data analysis 
The data used in this paper refers to the Xixian 

basin, in Henan province, China. The overall area is 

about 10190 km2 and includes 50 rainfall stations and 

one hydrological station. In order to collect data from 

these sensors, an IoT-based platform was established 

shown in Fig.4. We introduced the 2D convolutional 

operation to the filed of flood process forecasting.

 

 
Figure4: The IoT system of Xixian basin 
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Figure5: Rainfall data processing flowchart 

 

The data recorded from January 1, 2010 to 

September 7, 2018 were used in this paper. Rainfall 

stations in different regions of the IoT-based platform 

record data only if it rains in that region. We designed a 

rainfall data processing flow to integrate data from all 

rainfall stations. We estimated the missing rainfall data 

by using IDW(Inverse Distance Weighting) method 

Suhaila, Sayang and Jemain (2008) which is the most 

commonly used method in flood forecasting. The value 

of p usually ranges from 1.0 to 6.0, which is set as 2.0 in 

the paper. 

 

 
 

Figure6: Stream flow data processing flowchart 
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Figure7: Processed data of Xixian basin 

 

The missing stream flow data is filled by linear 

interpolation Chen, Mei, Xu, Yu and Huang ( 2018) 

because of its continuity. The correlation coefficient is a 

statistical index. There is a certain time interval between 

the stream flow process and the rainfall process due to 

the influence of confluence process. The confluence 

time varies in different basin which is influenced by the 

area, topography, geology, soil and vegetation of the 

basin.

 
Figure8: Correlation coefficients between rainfall and stream flow 

 

3.2 Construct dataset 
The average annual rainfall of 50 rainfall 

stations was shown in Fig. 9 which means that rainfall 

varies in different regions. Traditional methods obtain 

the rainfall of the whole basin by weighted summation 

of different rainfall stations, which could lose the spatial 

distribution information. Gridding method was used in 

this basin to get a relatively accurate spatial distribution 

of rainfall. A two-dimensional distribution matrix of 

rainfall in one hour with length of 144 and width of 103 

can be obtained by gridding the Xixian watershed. The 

length of forecast rainfall process needs to fit the length 

of the final output. Five models with the output length of 

24, 36, 48, 60 and 72 were discussed in this paper. In 

addition, topography is also one of the most important 

factors affecting flood formation. We downloaded the 

SRTM-90m DEM(Digit Elevation Model) data from the 

Geospatial Data Cloud. 
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Figure9: The average annual rainfall of 50 rainfall stations 

 

 
Figure10: Basing ridding 

 

 
 

We can get the geographical feature of the 

Xixian basin which can combine with the rainfall 

spatial-temporal feature. Meanwhile, the previous stream 

flow process with the same length of historical rainfall 

process in rainfall temporal feature is added to 

 

3.3 Model Design 

We designed a novel flood process forecasting 

model based on A convolutional network with three 

layers was used to extract complicated features from 

rainfall spatial-temporal feature and geographical 

feature.

 

 
Figure11: Rainfall spatial-temporal feature 

 

 



International Journal of Engineering and Management Research          e-ISSN: 2250-0758  |  p-ISSN: 2394-6962 

Volume-10, Issue-6 (December 2020) 

www.ijemr.net                                                                                              https://doi.org/10.31033/ijemr.10.6.16  

 

   124 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

 

 
Figure12: Processing the DEM data 

 

 
Figure13: The structure of the flood forecasting model based on CNN 

 

A network with two layers was used to predict 

the stream flow of the next T hours. The number of 

convolutional kernels and neurons in a fully connected 

layer are hyper-parameters that need to be determined by 

experiments. 

 

IV.  EXPERIMENT AND RESULT 
 

4.1 Network Optimization 
The input of convolutional network of the model 

proposed in this paper is a multi-channel input composed of 

the rainfall spatial-temporal features and geographical 

feature. Therefore, the number of convolutional kernels is 

designed.

 

 
 

Table 3: The performance statistics of different parameter sets of convolutional layers 

EC 500-200 TRAIN 

RMSE          R
2
 

TEST 

RMSE          R 

A 1512.67       0.227 6086.2         0.418 

B 1062.07       0.945 4835.47        0.537 

C 8167.09       0.958 4646.72       5  0.55 

D 1316.96       0.9328 5287.11       0.494 

 

The purpose of a convolution neural network is 

to extract and fuse features from the spatiotemporal 

distribution data represented by multi-channel. In this 

paper, it reduces the size of the input from the three 

dimensions of height, width, and channel. The 

convolution layer is used for feature extraction and 

fusion, and finally, the abstract spatial-temporal 

characteristics of rainfall containing geographic 
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information are formed. They set the output of the 

network as 72; the optimizer is Adam and the learning 

rate is 0.005. I fix the number of neurons of the full 

connection layer at 500 and 200. 

 

Figure 14: The RMSE and R2 of different parameter sets of convolutional layers 

 

 
 

Table 5: The performance statistics of different parameter sets off unll connection layers. 

EC 500-200 TRAIN 

RMSE          R
2
 

TEST 

RMSE          R 

E 560.68      0.713 1095.88       -0.0478 

F 6205.89       0.968 4596              0.578 

G 8167.09       0.958 1646.72       -4. 0.55 

 

Figure 15: The RMSE and R2 of different parameter sets of full connection layers 

 

In order to further improve the performance of 

the proposed model, we poola variety of ideas from the 

past work such as BN(Batch Normalization) Ioffe and 

Szegedy (2015b), Dropout Krizhevsky, Sutskever and 

Hinton (2012b) and L1, L2 regularization Huiand 

Hastie(2005). We carefully added these methods to the 

network and generated four models as shown in TABLE 

6 and set the output length as 24. The performance 

statistics as shown in TABLE 7 and Fig.16. As we 

gradually add these methods to the network, the R2 

score of training set begins to decline, while the R2 score 

of testing set begins to rise, which means that the 

generalization ability of the model has been improved. 
4.2 Discuss the Results 

Through extensive experiments, we finally 

determined the relatively better parameter combination 

of the hyper-Parameters of the model proposed in this 

paper. In order to study the influence of lead time on 

model performance, the length of the output was set as 

24, 36, 48, 60, 72 respectively.  The performance 
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statistics as shown in TABEL 8 and Figure 17 show that 

the performance of the model decreases gradually as the 

output length increases. o further verify the effect of the 

model, 10 historical flood processes from 2010 to 2018 

were used in this paper 

 

 

 

Figure 16: The RMSE and R2 of four models with different methods 

 

To verify the accuracy of the model in 

predicting the flood peak and arrival occasion as shown 

in Figure 18. The number of convolution kernels is 

designed to decrease layer by layer, and the input size is 

reduced from the three dimensions of length, width and 

channel. The convolution layer is used for feature 

extraction and fusion, and finally the abstract spatial-

temporal characteristics of rainfall containing 

geographic information are formed. The statistics are 

represented by multi-channel. The permissible errors of 

flood peak is 20% of the measured flood peak flow.

 

 
 

 

Figure 17: The RMSE and R2 of 5 models with different output length 
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The accuracy of flood peak and arrival occasion 

can be shown in TABLE 9.  When the lead time is 24 

hours, the accuracy of flood peak and arrival occasion is 

90% and 100%; When the lead time was 36 hours, the 

accuracy varied by 80% and 100%.  When the lead time 

was longer than 48 hours, the flood peak accuracy 

dropped to less than 70%. Therefore, the model 

proposed in this paper can accurately predict the flood 

process in the next 24 or 36 hours. 

 
Figure 18:  The performance of different leadtime models in 10 historical flood processes 

 
4.3 Discuss the Errors 

The errors of the model proposed in this paper 

come from three aspects. In Fig. 19, a small amount of 

rainfall caused a large-scale streamflow change, while 

some large- scale rainfall processes didn't. This 

phenomenon may be due to the sensor damage, data 

transmission lost or human factors such as reservoir 

storage and drainage. 

 

V. CONCLUSION 
 

With nearly 10 years’ historical data of Xixian 

basin collected by IoT, this paper proposed a flood 

process fore- casting model based on CNN, which can 

accurately predict the peak of flood and arrival occasion 

by comprehensively considering the rainfall spatial-

temporal features, geographical feature and trend 

feature. The rainfall spatial-temporal feature was 

obtained by gridding the basin to obtain the spatial 

distribution matrix of rainfall, and then stacking the 

spatial distribution matrix of rainfall in different time 

periods. The DEM data of the basin is splicing into the 

spatial- temporal features of rainfall as a channel after 

the average pooling operation. Then, the historical 

stream flow process of the basin as the trend feature 

combined with the complicated features extract by CNN; 

Finally, a full connection network with 2 layers was used 

to predict stream flow in multiple periods in the future. 

In addition, a large number of experiments are designed 

to determine the optimal model parameters.  Through the 

verification of 10 historical flood processes, it is 

ultimately proved that the model proposed in this paper 

meets the requirements of flood prediction. In this paper, 

CNN is introduced into the field of flood forecasting, 

proposed a new way to consider a variety of factors. In 

our future work,  more features such as evaporation,  
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vegetation,  soil and other factors will be introduced to 

further improve the performance of flood forecasting 

model.   In addition,  we will introduce edge computing 

Liu, Chen, Pei, Maharjan and Zhang (2020); Gao, Huang 

and Duan (2020a) and nodal caching strategies Chen, 

Wang, Qiu, Atiquzzaman and Wu (2020b) into the water 

conservation system to speed up the flooding monitoring 

and management. 
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