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ABSTRACT 
Nonlinear programming problem (NPP) had become 

an important branch of operations research, and it was the 

mathematical programming with the objective function or 

constraints being nonlinear functions. There were a variety of 

traditional methods to solve nonlinear programming problems 

such as bisection method, gradient projection method, the 

penalty function method, feasible direction method, the 

multiplier method. But these methods had their specific scope 

and limitations, the objective function and constraint 

conditions generally had continuous and differentiable 

request. The traditional optimization methods were difficult to 

adopt as the optimized object being more complicated. 

However, in this paper, mathematical programming 

techniques that are commonly used to extremize nonlinear 

functions of single and multiple (n) design variables subject to 

no constraints are been used to overcome the above challenge. 

Although most structural optimization problems involve 

constraints that bound the design space, study of the methods 

of unconstrained optimization is important for several 

reasons. Steepest Descent and Newton’s methods are employed 

in this paper to solve an optimization problem. 
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I. INTRODUCTION 
 

Analysts of operations research, managers, 

engineers of all kinds and planner faced by problems which 

needs to be solve. These problems may imply arriving at an 

optimal design, finding the flight of a jet etc. For example, 

in the engineering design, because there was no continuity 

in competition so therefore, it was communal to include a 

large safety factor. Now that there is continuity in 

competition, it is no longer capable to develop only an 

acceptable design. In other instance, such as in engineering 

motorcycle design, the development may be limited. Hence 

we ask questions like: can we find a more economical 

design?  Are we making use of the scarce resources 

effectively? Are we taking risk within the bankable limits?  

In response to all these, there has been a very rapid growth 

of optimization techniques and models. 

The acceptance of the field of operations research 

in the study of business, and industrial activities can be 

attributed, at least in part, to the extent to which the 

operations research methods and approach have aided the 

decision makers. The application of operations research in 

the early post-war was mainly in the area of linear 

programming and use of statistics. Linear programming 

(LP) is used to find the most accurate outcomes (such as 

minimum cost or maximum profit) in a mathematical model 

whose requirements are imaged by linear relationships. 

Linear programming and nonlinear programming (NLP) are 

both similar in that it is compose of an objective function, 

general constraint, and (NLP) includes at least one 

nonlinear function, which could be the objective function, 

or some or all of the constraints. 

Many real systems are inherently nonlinear, for 

example: the fall in signal strength or power with distance 

from the transceiver (antenna), so therefore, it is important 

that optimization algorithms be able to handle them.   

In mathematics, nonlinear programming (NLP) is 

the process of solving an optimization problem defined by a 

system of equalities and inequalities, collectively termed 

constraints, over a set of unknown real variables, along with 

an objective function to be maximized or minimized, where 

some of the constraints or the objective function are 

nonlinear. It is the sub-field of Mathematical optimization 

that deals with problems that are not linear. (Wikipedia.). 

However, in this paper, unconstrained optimization is been 

considered and discussed. 

1.1 Statement of the Problem 

In time past, engineers, operations researchers, 

managers, etc were faced with problems to be solved. Some 

of these problems can be modelled into mathematical 

functions or equations which might not be linear (nonlinear 

systems of equations) and may be subject to some 

constraints or no constraints (unconstraint). Nonlinear 

programming approach can be employed to solve such 

mathematical equations. Here, we are looking at problems 

that involve nonlinear equations that are not subjected to 
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constraints by applying two unconstraint optimization 

methods, Steepest Descent method and Newton’s method 

and compare results.    

1.2 Aim and Objective 

Aim of the Study 

 The aim is to solve unconstrained optimization 

problem using Steepest Descent and Newton’s 

method and comparing the behaviour of their 

result in terms of rate of convergence and degree 

of accuracy. 

Objectives of the Study 

 The objective is to do a proper study of 

unconstrained optimization problem studying two 

methods which is Steepest Descent and Newton’s 

method 

 To solve an example using the two methods and 

compare the results  

1.3 Significance of the Study 

Unconstrained optimization is important for the 

following reasons: 

 If the design is at a stage where no constraints are 

active then the process of determining a search 

direction and travel distance for minimizing the 

objective function involves an unconstrained 

function minimization algorithm. Of, course in 

such a case one has constantly to watch for 

constraint violations during the move in design 

space.  

 A constrained optimization problem can be cast as 

an unconstrained minimization problem even if the 

constraints are active.  

 Unconstrained minimization strategies are 

becoming increasingly popular as techniques 

suitable for linear and nonlinear structural analysis 

problems which involve solution of a system of 

linear or nonlinear equations. 

1.4 Limitations of the Study 

The problem in nonlinear programming is that 

nonlinear models are much more difficult to optimize. 

Some of the problems are listed below: 

 Numerical methods for solving nonlinear 

programs have limited information about the 

current point. 

 Different algorithms and methods arrive at 

different solutions and outcome. 

 Different but equivalent formulations of the model 

given to the same solver may produce different 

solution and outcomes. 

 Different starting point may lead to different final 

solution. 

 It may be difficult to find a feasible starting point. 

 There is no finite determination of the outcome. 

 It is difficult to determine whether the conditions 

to apply a particular method are met.(Chinneck, 

2012) 

1.5 Definition of Some Terms 

Unconstrained optimization: Unconstrained 

optimization is an optimization that is subject to no 

constraints. Such problems may contain one or N variables.  

Univariate: Problems with a single variable are 

called univariate. The univariate optimum for       

occurs at points where the first derivative of      with 

respect to          equals zero. However, points which 

have zero first derivatives do not necessarily constitute a 

minimum or maximum. The second derivative is used to 

discover character of a point. Points at which a relative 

minimum occurs have a positive second derivative at that 

point while relative maximum occurs at points with a 

negative second derivative. Zero second derivatives are 

inconclusive.  

It is important to distinguish between local and 

global optima. A local optimum arises when one finds a 

point whose value in the case of a maximum exceeds that of 

all surrounding points but may not exceed that of distant 

points. The second derivative indicates the shape of 

functions and is useful in indicating whether the optimum is 

local or global. The second derivative is the rate of change 

in the first derivative. If the second derivative is always 

negative (positive) that implies that any maximum 

(minimum) found is a global result. Consider a 

maximization problem with a negative second derivative 

for which         . This means the first derivative was > 

0 for      and was < 0 for      . The function can 

never rise when moving away from X* because of the sign 

of the second derivative. An everywhere positive second 

derivative indicates a global minimum will be found 

if         , while a negative indicates a global 

maximum.  

Multivariate functions: The univariate 

optimization results have multivariate analogues. In the 

multivariate case, partial derivatives are used, and a set of 

simultaneous conditions is established. The first and second 

derivatives are again key to the optimization process, 

excepting now that a vector of first derivatives and a matrix 

of second derivatives is involved.  

There are several terms to review. First, the gradient vector, 

, is the vector of first order partial derivatives of a 

multivariate function with respect to each of the variables 

evaluated at the point .  

 

           
      

   
   (1.0) 

where; 
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 Stands for the partial derivative of f(X) with 

respect to Xj. The second derivatives constitute the Hessian 

matrix, 

            
      

      
   (1.1) 

The Hessian matrix, evaluated is an N by N 

symmetric matrix of second derivatives of the function with 

respect to each variable pair. 

The multivariate version of the second derivative 

test involves examination of the Hessian matrix. If the 

Hessian matrix is neither positive nor negative definite, 

then no conclusion can be made about whether this point is 

a maximum or minimum and one must conclude it is an 

inflection or saddle point.( McCarl, 2010). 

 

II. NONLINEAR PROGRAMMING 
 

The paper that first used the name ‘nonlinear 

programming’ was written 41 years ago. 

In the intervening period, there were a number of 

things about the influences, both mathematical and social, 

that have shaped the modern development of the subject. 

Some of these are quite old and long predate the 

differentiation of nonlinear programming as a separate area 

for research. Others are comparatively modern and 

culminate in the period 41 years ago when this 

differentiation took place.Tucker, (1997). 

2.1 Basic Concepts of Optimization Methods 

Optimization problems can be classified based on 

the type of constraints, nature of design variables, physical 

structure of the problem, nature of the equations involved, 

deterministic nature of the variables, permissible value of 

the design variables, separability of the functions and 

number of objective functions. These classifications are 

briefly discussed below.  

2.1.1 Classification Based on Existence of Constraints 

Under this category optimizations problems can be 

classified into two groups as follows: 

Constrained Optimization Problems: which are subject to 

one or more constraints. 

Unconstrained Optimization Problems: in which no 

constraints exist. 

2.1.2 Classification Based on the Nature of the Design 

Variables 

There are two broad categories in this 

classification. 

(i) In the first category the objective is to find a set 

of design parameters that makes a prescribed function of 

these parameters minimum or maximum subject to certain 

constraints. For example to find the minimum weight 

design of a strip footing with two loads shown in Fig 1 (a) 

subject to a limitation on the maximum settlement of the 

structure can be stated as follows.  

Find X  = which minimizes   (2.0) 

f(X) = h(b,d)(2.1) 

Subject to the constraints   X ) ; b  0 

; d  0                  (2.1.1) 

where  is the settlement of the footing. Such problems 

are called parameter or static optimization problems.  

It may be noted that, for this particular example, 

the length of the footing (l), the loads P1 and P2 and the 

distance between the loads are assumed to be constant and 

the required optimization is achieved by varying b and d. 

(Kumar, 2014). 

(ii) In the second category of problems, the 

objective is to find a set of design parameters, which are all 

continuous functions of some other parameter that 

minimizes an objective function subject to a set of 

constraints. If the cross sectional dimensions of the 

rectangular footings are allowed to vary along its length as 

shown in Fig 3.1 (b), the optimization problem can be 

stated as :   

Find X(t)  = which minimizes  (2.2) 

f(X) = g( b(t), d(t) )    (2.3) 

Subject to the constraints  

X(t))     0  t l              (2.3.1) 

b(t)  0         0  t l    (2.4) 

d(t)  0         0  t l                      (2.5) 

The length of the footing (l) the loads P1 and P2 , 

the distance between the loads are assumed to be constant 

and the required optimization is achieved by varying b and 

d along the length l. ( Kumar2014). 

Here the design variables are functions of the 

length parameter t. this type of problem, where each design 

variable is a function of one or more parameters, is known 

as trajectory or dynamic optimization problem.  
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Figure 1 (a)     Figure 1 (b) 

 

2.1.3 Classification Based on the Physical Structure of the 

Problem 

Based on the physical structure, optimization 

problems are classified as optimal control and non-optimal 

control problems.  

(i) Optimal Control Problems 

An optimal control (OC) problem is a 

mathematical programming problem involving a number of 

stages, where each stage evolves from the preceding stage 

in a prescribed manner. It is defined by two types of 

variables: the control or design and state variables. The 

control variables define the system and controls how one 

stage evolves into the next. The state variables describe the 

behavior or status of the system at any stage. The problem 

is to find a set of control variables such that the total 

objective function (also known as the performance index, 

PI) over all stages is minimized, subject to a set of 

constraints on the control and state variables. An OC 

problem can be stated as follows:  

 

FindX which minimizes f(X) =                                            (2.6) 

Subject to the constraints 

  i = 1, 2…l                                                      (2.6.1) 

,   j = 1, 2…l                                                      (2.6.2) 

,   k = 1, 2…l                                                     (2.6.3) 

Where xi is the ith control variable, yi is the ith 

state variable, and fi is the contribution of the ith stage to 

the total objective function. gj, hk, and qi are the functions 

ofxj, yj ;xk, yk and xi andyi, respectively, and l  is the total 

number of states. The control and state variables xi andyi 

can be vectors in some cases.  

(ii) Problems which are not optimal control problems are 

called non-optimal control problems. 

2.1.4 Classification Based on the Nature of the Equations 

Involved 

Based on the nature of equations for the objective 

function and the constraints, optimization problems can be 

classified as linear, nonlinear, geometric and quadratic 

programming problems. The classification is very useful 

from a computational point of view since many predefined 

special methods are available for effective solution of a 

particular type of problem.  

(i) Linear Programming Problem 

If the objective function and all the constraints are 

‘linear’ functions of the design variables, the optimization 

problem is called a linear programming problem (LPP). A 

linear programming problem is often stated in the standard 

form:
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Find X =                                                                                                         (2.7) 

Which maximizes f(X) =                                                                     (2.7.1) 

Subject to the constraints 

,   j = 1, 2, . . . ,m                                                (2.7.2) 

xi ,   j = 1, 2, . . . , m     (2.7.3) 

where 

ci, aij, and bj are constants.  

 

(ii) Nonlinear Programming Problem 

If any of the functions among the objectives and 

constraint functions is nonlinear, the problem is called a 

nonlinear programming (NLP) problem. This is the most 

general form of a programming problem and all other 

problems can be considered as special cases of the NLP 

problem.  

(iii) Geometric Programming Problem 

A geometric programming (GMP) problem is one 

in which the objective function and constraints are 

expressed as polynomials in X. A function h(X) is called 

apolynomial (with  terms) if h can be expressed as 

 

         
     

      
        

     
      

          
     

      
    (2.8) 

where 

cj ( ) and aij (  and ) are constants with  and Thus GMP problems can 

be posed as follows:  

Find X which minimizes  

f(X) =   cj> 0,    xi> 0     (2.9) 

subject to 

gk(X) =    ajk> 0,    xi> 0, k = 1,2,…..,m    (2.9.1) 

whereN0 and Nk denote the number of terms in the 

objective function and in the k
th

 constraint function, 

respectively. 

(iv) Quadratic Programming Problem 

A quadratic programming problem is the best 

behaved nonlinear programming problem with a quadratic 

objective function and linear constraints and is concave (for 

maximization problems). It can be solved by suitably 

modifying the linear programming techniques. It is usually 

formulated as follows:  

F(X) =                                    (2.10) 
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   j = 1,2,….,m 

xi ,     i = 1,2,….,n 

where 

c, qi, Qij, aij, and bj are constants. 

2.1.5 Classification Based on the Permissible Values of 

the Decision Variables 

Under this classification, objective functions can 

be classified as integer and real-valued programming 

problems.  

(i) Integer Programming Problem  

                If some or all of the design variables of an 

optimization problem are restricted to take only integer (or 

discrete) values, the problem is called an integer 

programming problem. For example, the optimization is to 

find number of articles needed for an operation with least 

effort. Thus, minimization of the effort required for the 

operation being the objective, the decision variables, i.e. the 

number of articles used can take only integer values. Other 

restrictions on minimum and maximum number of usable 

resources may be imposed.  

(ii) Real-Valued Programming Problem 

A real-valued problem is that in which it is sought 

to minimize or maximize a real function by systematically 

choosing the values of real variables from within an 

allowed set. When the allowed set contains only real values, 

it is called a real-valued programming problem.  

2.1.6 Classification Based on Deterministic Nature of the 

Variables  

               Under this classification, optimization problems 

can be classified as deterministic or stochastic 

programming problems.  

(i) Stochastic Programming Problem 

                   In this type of an optimization problem, some or 

all the design variables are expressed probabilistically (non-

deterministic or stochastic). For example estimates of life 

span of structures which have probabilistic inputs of the 

concrete strength and load capacity is a stochastic 

programming problem as one can only estimate 

stochastically the life span of the structure.  

(ii) Deterministic Programming Problem 

                   In this type of problems all the design variables 

are deterministic. 

2.1.7 Classification Based on Separability of the 

Functions 

                  Based on this classification, optimization 

problems can be classified as separable and non-separable 

programming problems based on the separability of the 

objective and constraint functions.  

(i) Separable Programming Problems 

                  In this type of a problem the objective function 

and the constraints are separable. A function is said to be 

separable if it can be expressed as the sum of n single-

variable functions,  

 

, i.e. 

     (2.11) 

and separable programming problem can be expressed in standard form as : 

Find X which  

minimizes                                                                    (2.12) 

subject to  

 ,  j = 1,2,. . . , m                                    (2.12.1) 

where 

bj is a constant.  
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2.1.8 Classification Based on the Number of Objective 

Functions 

                 Under this classification, objective functions can 

be classified as single-objective and multi-objective 

programming problems.  

(i) Single-Objective Programming Problem in which 

there is only a single objective function.  

(ii) Multi-Objective Programming Problem 

A multi-objective programming problem can be stated as 

follows: 

 

Find X which minimizes    (2.13) 

Subject to  

gj(X) ,  j = 1, 2, . . . , m 

wheref1, f2 . . . fk denote the objective functions to be minimized simultaneously.   

For example in some design problems one might 

have to minimize the cost and weight of the structural 

member for economy and, at the same time, maximize the 

load carrying capacity under the given constraints. 

(Kumar,2014). 

 

III. METHODOLOGY 
 

Methodology is the systematic, theoretical analysis 

of the methods applied to a field of study. It comprises the 

theoretical analysis of the body of methods and principles 

associated with a branch of knowledge. Typically, it 

encompasses concepts such as paradigm, theoretical model, 

phases and quantitative or qualitative techniques. Note that 

a methodology does not set out to provide solutions to the 

problem 

3.1 Steepest Descent Method 

This method is also known as conjugate direction 

method. 

Move in the direction of steepest ascent. Compute the slope 

of the function at the local point. From this obtain the best 

direction to move. Hill Climbing scheme. 

 

 
Figure 2(a) 

At next iteration, 

 
Figure 2(b) 

     XfXfXf k,..., 21

0
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And, again at next iteration, 

 
Figure 2(c) 

 

Looking into the process from the beginning till the ascent is complete; it looks like the following on a contour plot 

 

 
Figure 3 

 

 

3.2 Steepest Descent Algorithm 

Choose a starting point kx . Find the local 

gradient of the function at this point, i.e. obtain
kx

f . 

Move in the direction of the gradient and select the next 

evaluation point to be 

kxkk fxx  1    (3.0) 

Obtain   that maximizes )( 1kxf . Continue 

the process till convergence is realized. This is Hill 

climbing scheme. The above algorithm is for a multivariate 

function. 

To minimize a univariate function by Steepest Descent 

Method, we start at some point    and at k update the 

algorithm of the Steepest Descent Method for a univariate 

function is given below: 

                 (3.1) 

where         
  

  
and   is regarded as the step size. 

A wrong step size   may not reach convergence, 

so a careful selection of the step size is important. Too large 

will diverge; too small it will take long a long time to 

converge. The best way is to choose a fixed step size that 

will assure convergence wherever you start Steepest 

Descent. 

Now, the formula for the Steepest Descent Method in this 

case is: 

http://en.wikipedia.org/wiki/Image:Gradient_descent.gif
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                                                          (3.2) 

 

 

3.3 Newton’s Method 

Newton’s method is a general procedure that can 

be applied in many diverse situations. When specialized to 

the problem of locating a zero of real-valued function of a 

real variable, it is often called Newton-Raphson iteration. In 

general, Newton’s method is faster than the bisection 

method and Fixed-Point iteration since its convergence is 

quadratic rather than linear. Once the quadratic becomes 

effective, that is, the values of Newton’s method sequence 

are sufficiently close to the root, the convergence is so rapid 

that only a few more values are needed. Unfortunately, the 

method is not guaranteed always to convergence. Newton’s 

method is often combined with other slower method in a 

hybrid method that is numerically globally convergence. 

Suppose that we have a function f whose zeros are to be 

determined numerically. Let r  be a zero of )(xf  and let 

x  be an approximation to r . If f  exists and is 

continuous, then by Taylor’s Theorem, 

 

         20 hoxfhxfhxfrf  ,       (3.3) 

Where xrh  . If h  is small (that is, x  is near r ), then it is reasonable to ignore the  2ho  term and solve the remaining 

equation for h . If we do this, the result is    xfxfh  . If x  is an approximation to r , then    xfxfx   should 

be r . Newton’s method begins with an estimate 0x  of r  and then defines inductively 

xn+1 = xn -
f (xn )

¢f xn( )
n ³ 0( ).    (3.4) 

3.3.1 Newton’s Algorithm 

x0 =  Initial guess 

xn+1 = xn -
f (xn )

¢f xn( )
, for n = 0,1,2, (3.5) 

Before examining the theoretical basis for 

Newton’s method, let’s give a graphical interpretation of it. 

From the description already given, we can say that 

Newton’s method involves linearizing the function. That is, 

f  was replaced by a linear function. The usual way of 

doing this is to replace f  by the first two terms in the 

Taylor series. Thus, if 

 

          
2

!2

1
cxcfcxcfcfxf .  (3.6) 

Then the linearization (at c) produces the linear function 

      cxcfcfxl  .                                                                        (3.7) 

Note that l  is a good approximation to f  in the 

vicinity of c , and in fact we have    cfcl   and

   cfcl  . Thus, the linear function has the same value 

and the same slope as fit the point c . So in Newton’s 

method we are constructing the target line to f at a  point 

near r , and finding where the target line intersects the x -

axis. 

 

IV. DATA PRESENTATION ANANLYSIS 

AND INTERPRETATION 

 

 

4.1 Minimization of the Optimization Problem 

In this section, there will be a comparison between 

the two unconstrained optimization methods. We use the 

two methods to solve an optimization problem. As we 

know, the two unconstrained optimization methods to be 

used to solve the optimization problem are Steepest Descent 

Method and Newton’s Method. 

The optimization problem to be solved is a univariate 

function. The function to be optimized will be minimized is 

given below: 

 

                                               (4.0) 
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4.2 Steepest Descent Method 

Using the Steepest Descent method to solve the 

above function, we are going to use the formula for 

univariate functions which is: 

                                  (4.1)

 

where          
  

  
, therefore            

  

   
  (4.2) 

                        

The derivative of     is easily computed: 
  

  
               (4.3) 

Then we need to choose an initial point for   =10 and            

When     then, 

         
  

  
     

                                  
= 9.14195 

Therefore,              

Since            and  
  

  
      0.858050, 

we continue to iterate by substituting    to the Steepest 

Descent formula as     to obtain             and so 

on until we get to the iterate at which it converges. The 

complete iteration sequence is given in the table below: 

4.2.1 Iterates of Steepest Descent Method 

     
 

  

  
 

     

0 10.00000 0.858050 9.141950 

1 9.141950 0.700741 8.441209 

2 8441209 0.584069 7.857140 

3 7.857140 0.494927 7.362213 

4 7.362213 0.425158 6.937055 

5 6.937055 0.369448 6.567607 

6 6.567607 0.324209 6.243398 

7 6.243398 0.286939 5.956459 

8 5.956459 0.255846 5.700613 

9 5.700613 0.229623 5.470990 

10 5.47099 0.207292 5.263698 

11 5.263698 0.188109 5.075589 

12 5.075589 0.167105 4.908484 

13 4.908484 0.157398 4.751086 

14 4.751086 0.144661 4.606425 
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15 4.606425 0.133426 4.472999 

16 4.472999 0.123465 4.349534 

17 4.349534 0.114590 4.234944 

18 4.234944 0.106648 4.128296 

19 4.1288296 1.064130 3.064166 

20 3.064166 1.053321 2.010845 

21 2.010845 0.008666 2.002179 

22 2.002179 0.008325 1.993686 

23 1.993686 0.008325 1.985361 

24 1.985361 0.008113 1.9772480 

25 1.977248 0.008005 1.969243 

26 1.969243 0.007851 1.961392 

27 1.961255 0.007691 1.96034 

Source: Research field study, 2019 
 

The Steepest Descent method converges to    
     at the 27

th
 iteration. 

4.3 Newton’s Method 

Using the univariate formula of Newton’s method 

to solve the optimization problem that was solved using 

Steepest Descent method. 

         
     

      
                    (4.4) 

Thus, algorithm make progression as long as  

        .The algorithm above determines its next 

estimate. 

Now, we consider the function to be minimized:

 

                         (4.5) 

      is also known as the derivative of      which is: 

                        (4.6) 

Let’s now assume an initial point       

When     then, 

       
     

      
 

    
                             

                      
 

          

The value for             and 
     

      
 2.978923. As discussed in Steepest Descent method, 

we continue to iterate by substituting    to the Newton’s 

formula as     to obtain             and so on until 

we get to the rate at which it converges. The complete 

iteration sequence is given in the table below: 

4.3.1 The iterates of Newton’s Method 

 

          

      
 

     

0 10.000000 2.978923 7.0321080 

1 7.0321080 1.976429 5.055679 

2 5.055679 1.314367 3.741312 

3 3.741312 0.871358 2.869995 

4 2.869995 0.573547 2.296405 

5 2.296405 0.371252 1.925154 
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6 1.925154 0.230702 1.694452 

7 1.694452 0.128999 1.565453 

8 1.565453 0.054156 1.511296 

9 1.511296 0.0108640 1.500432 

10 1.500432 0.000431 1.500001 

Source: Research field study, 2019 
 

After the iteration, our convergence to        at 

the 5
th

 iteration. 

Now considering the iteration s of the two 

methods, we noticed that the rate at which Steepest Descent 

uses to converge is slow because it was at the 27
th

 iterate it 

got its convergence. While for Newton’s the rate of 

convergence is fast in the sense that it converged at the 10
th

 

iteration and it is more accurate. 

Previous researchers have also concluded that 

Newton’s method is faster and more accurate than other 

optimization methods. 

 

V. CONCLUTION 
 

In this work, the researchers tried to examine the 

rate at which the two unconstrained optimization method 

will converge and the accuracy of the methods. 

The objective of this research work is to find out 

which method is more accurate to getting to the 

convergence point. It was observed that the Steepest 

Descent method took a longer time before it got to the point 

of convergence while for that of Newton’s method, the rate 

at which it got to the point of convergence was far faster 

and more accurate than Steepest Descent method.   

This paper work was aimed at studying the 

convergence of two unconstrained optimization methods 

using the two methods to solve the same optimization 

problem. It highlights the significance of the study, 

limitations and definition of some terms, which formed the 

parameters for the research to work with. It also focuses on 

the basics of optimization methods, types of problem and 

what method could be used in solving them. The two 

unconstrained optimization methods chosen were used to 

solve an optimization method, checking their convergence 

point and their rate of convergence.  

5.1 Recommendation 

1. It is recommended that Newton’s method should 

be used preferred to Steepest Descent method for 

easy computation and accurate solution. 

2. There should be a fixed value for the step size in 

Steepest Descent method. 

3. This project work is recommended to those 

interested in carrying out optimization subject to 

no constraint. The right method should be used 

depending on the problem definition and target 

goal.  
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