
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 116 This work is licensed under Creative Commons Attribution 4.0 International License.

Exploring the Impact of Magnitude- and Direction-based Loss Function

on the Profitability using Predicted Prices from Deep Learning

Chihcheng Hsu
1
 and Lichen Tai

2

1
Associate Professor, Department of Information Management, National Central University, TAIWAN

2
Master, Department of Information Management, National Central University, TAIWAN

1
Corresponding Author: khsu@mgt.ncu.edu.tw

ABSTRACT

Researches on predicting prices (as time series) from

deep learning models usually use a magnitude-based error

measurement (such as). However, in trading, the error in

the predicted direction could affect trading results much more

than the magnitude error. Few works consider the impact of

ill-predicted trading direction as part of the error

measurement.

In this work, we first find parameter sets of LSTM

and TCN models with low magnitude-based error

measurement, and then calculate the profitability using

program trading. Relationships between profitability and

error measurements are analyzed.

We also propose a new loss function considering both

directional and magnitude error for previous models for re-

evaluation. Three commodities are tested: gold, soybean, and

crude oil (from GLOBEX). Our findings are: with given

parameter sets, if merchandise (gold and soybean) is of low

averaged magnitude error, then its profitability is more stable.

The proposed loss function can further improve profitability.

If it is of larger magnitude error (crude oil), then its

profitability is unstable, and the proposed loss function cannot

improve nor stabilize the profitability.

Furthermore, the relationship between profitability

and error measurement for models of LSTM and TCN with or

without customized loss function is not, as commonly believed,

highly positively correlated (i.e., the more precise the

predicted value, the more trading profit) since the correlation

coefficients are rarely higher than 0.5 in all our experiments.

However, the customized loss functions perform better in TCN

than in LSTM.

Keywords— Deep Learning, Price Prediction, Program

Trading, Time Sequence, LSTM, TCN

I. INTRODUCTION

Predicting future values of time series is the topic

of many previous works [10,14,16]. Using deep learning

provides better progress than that of using linear models

[9,14]. However, few works provide the guideline on

applying the forecasted values in actual trading, as well as

measuring the profitability concerning the error

measurement (such as and MSE).

In actual trading, predicting the trading direction

(i.e., to buy or to sell) incorrectly (called directional error in

this paper) usually results in bigger loss than the magnitude

error from the difference between the predicted and actual

values. When the predicted value has a large magnitude

error from the actual one, but with the correct trading

direction, this may lead to profit (Fig.1.a). A smaller

magnitude error with the incorrect directional prediction

may lead to a larger loss (Fig. 1.b). We study how to

incorporate directional error into error measurement for

deep learning models in this paper.

Figure 1: (a) Correct directional prediction with larger

magnitude error; (b) incorrect directional prediction with

smaller magnitude error

Different merchandise may need different deep

learning models. LSTM is suitable for merchandise with

lower volatility [5, 14], TCN may perform better on

merchandises with higher volatility due to its pre-filtered

local patterns [11]. Finding suitable deep learning models

and parameter sets for studied merchandises is the first step

to study their profitability.

Program trading can systematically and repeatedly

explore the profitability of learning models. The utilized

trading program should match the timing where learning

models generate values to reduce unnecessary errors.

We explore the related literature in Section II. In

Section III, a three-staged process is proposed to evaluate

magnitude error for parameter settings of deep learning

models. The specific trading program and the loss function

incorporating both directional and magnitude error are also

introduced in Section III. Section IV details the results of

experiments with discussion. The conclusion comes in

Section V.

(a) (b)

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 117 This work is licensed under Creative Commons Attribution 4.0 International License.

II. RELATED LITERATURE

Time-series: Variables inherently ordered by time

are called time series, such as stock or currency price. They

are usually not expressible as linear functions since the

volatility and fluctuation may change significantly along

the time. With a good learning model and long enough data,

a self-adaptive learning model may provide the right

prediction [17]. Deep learning models is one of this kind.

Neural networks as learning models: Neural

networks use neuron, layers of neurons, and adjustable

weights to capture the non-linear relationship among input

and output [3]. The neuron mimics the human brain to work

as simple units, which are highly connected. Weights on the

links may substantially affect the networks, and overfitting

problem may occur quickly. The number of layers, the

number of neurons in each layer, and parameters such as

the dropout rate should be regulated to avoid overfitting

problems.

Deep learning: Deep learning is a multi-layered

neural network with sophisticated routing among inter-

connected neurons and layers. In traditional data mining,

features are usually manually specified in advance, and this

is called feature engineering. For data with inherently

complex features, feature engineering is complicated. Deep

learning achieves automatic feature engineering through

those layers of neurons [3]. However, the quality of deep

learning is profoundly affected by its training process. For

example, the gradient should be managed appropriately to

avoid gradient explosion or gradient vanishing problems.

Deep learning for time series: With cross-layered

connectivity, recurrent neural network (RNN) allows deep

learning on time series [3]. By redirecting the output value

back to the input, RNN acquires the “memory” effect.

Uncontrolled utilization of memory may lead to more noise.

LSTM (Long Short Term Memory) maintains the memory

effect of RNN but only keeps important one for future

usage. Pant in [14] successfully applies LSTM to predict

the currency fluctuation of the US dollar and Russian

Ruble.

CNN (Convolution Neural Networks) excels at

image recognition but performs less robust in time series

prediction. Bai et al. (2018) proposes TCN (Temporal

Convolutional Networks) for time-series prediction and get

better results than LSTM in many situations. TCN, similar

to CNN, acquires signals simultaneously, where RNN

acquires signals sequentially. TCN regulates the sliding

windows for convolution to enable time series prediction.

In this paper, TCN is also explored, in addition to LSTM.

Activation functions: The purpose of activation

function in neural networks is to ensure its input and output

are not linearly related, as a linear relationship between

input and output reduces the expressiveness of the networks

significantly. Commonly used non-linear functions are

Sigmoid, tanh, and ReLu [16]. Sigmoid is commonly used

for classification problems as it maps the input to value

between 0 and 1. Tanh and ReLu are commonly used for

non-classification problems, where ReLu speeds up the

training without a gradient vanishing problem [8].

Hochreiter in [6] further provides another activation

function, SeLu, for time series problems. SeLu can

converge well, avoid gradient explosion or vanishing

problems, and perform well in deeper layered networks.

Thus, both SeLu and ReLu are tested in our TCN

experiments. However, due to the limitation of Cudnn in

our LSTM model, only Tanh can be used for the activation

function in our LSTM testing. The definition of SeLu

function is provided as below:

Loss function: The quality of regression is

improved by minimizing the loss function. The loss

function usually measures the absolute or squared distance

between the actual and predicted values. The functions of

MAE and MSE are expressed as follows:

MAE tends to find local optimum when the

gradient increases. MSE could be affected by outliers where

normalization can reduce the problem, thus, MSE is more

popular than MAE [2].

Measuring the quality of deep learning models:

MSE or coefficient of determination () are used in deep

learning to measure the quality of the learning. is

developed from MSE with variance as the denominator to

ensure its values always range between 0 and 1 and allow

comparison across different features. Its function is as

follow:

When the number of samples increases, may

lose accuracy as its numerator increases un-proportionally.

Hyndman and Koehler in [7] proposed the use of MASE to

reduce the problem. MASE uses the naïve projection of in-

sample data as the denominator to reduce the errors from

out-sample data and achieves better normalization. Its

function is expressed as follows:

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 118 This work is licensed under Creative Commons Attribution 4.0 International License.

Program trading: Program trading uses a set of

fixed rules expressed as programs to buy and sell

merchandise. It can apply to merchandise with historical

price data repeatedly to ensure the provided rules for

specific merchandise are indeed profitable (Keith, 2000).

Multicharts [12] is used in this research due to its wide user

base and easy readability.

III. SYSTEM DESIGN AND

IMPLEMENTATION

Our proposed system design and experiments are

divided into three stages and expressed in Fig. 2. The first

stage focuses on finding models and settings from LSTM

and TCN with error measured by and MASE. In the

second stage, the predicted values are used in the trading

program to study their profitability and relationship with

error measurement (and MASE). The proposed

customized loss function considering both directional and

magnitude error is introduced in the third stage, where the

works in the first two stages are repeated for similar models

with this modification on loss function inserted. Results

from these experiments are analyzed to understand the

potential improvements.

Figure 2: Three-staged system design and experiments

Use trading programs with the predicted next-

day’s close prices: Most works on deep learning models

highlight their contribution by measuring the improvement

on for the proposed models. Our research further pursues

the trading profitability of predicted values as another

possible measurement for the quality of learning models.

The utilized trading model should match how the next-day

close price is predicted. The trading model should be kept

simple enough and not introduce other factors to dilute the

effect of the predicted next-day close price from the

learning models. As shown in Fig. 3, we propose to enter

the market five minutes before the close of today and exit

the position before the end of the next trading day. A buy

position is entered when the predicted close price for the

next day is proportionally higher than today’s close price.

To reduce unexpected risk, a percentage stop-loss is used to

liquidate position if a certain percentage of loss relative to

price is reached. The exact proportion to today’s close

price for entry and stop-loss is found by the optimization

mechanism from program trading [15]. The short position is

done with the exact opposite rules. If this simple trading

program can profit, we can attribute most of the success to

the precision of the predicted next-day close value.

Figure 3: A trading model utilizes the predicted next-day

close price at around today’s close

In existing researches, today’s close price is

always used to predict the next-day close price [9, 14]. In

reality, when today’s close price is available for the

prediction, the market is already closed for trading. This

problem should be fixed when trading profitability is

studied. We use the price five minutes before the close to

predicting the next-day close price in the proposed trading

program. To verify the feasibility of this modification, the

fluctuation of the last five minutes before close for the three

merchandise studied in our experiments are analyzed. The

average price fluctuation for these merchandise in the last

five minutes is less than 0.01% as shown in Table 1. We

further use the actual close price and the price five minutes

before the close as two different inputs for the same LSTM

models. The goal is to know how different the predicted

next-day values are from the actual next-day close. As

shown in Table 2, the for these two different inputs are

almost the same.
TABLE I

THE PRICE DIFFERENCE BETWEEN TODAY’S CLOSE AND FIVE MINUTES

BEFORE THE CLOSE

 SOYBEAN CRUDE OIL GOLD

AVERAGE 0.075(0.007%) 0.002(0.003%) -0.023(-0.002%)

MAXIMUM 6.0(0.544%) 0.2(0.267%) 6.0(0.444%)

MINIMUM -3.75(-0.340%) -0.19(-0.253%) -11.5(-0.851%)

STANDARD

DEVIATION

1.046 0.039 0.769

TABLE 2

 OF PREDICTED AND ACTUAL VALUES, USING ACTUAL CLOSE OR PRICE

FIVE MINUTES BEFORE CLOSING AS INPUTS

 SOYBEAN CRUDE OIL GOLD

CLOSE PRICE 0.945 0.972 0.967

5 MIN BEFORE

CLOSE

0.945 0.976 0.963

The next-day exit trading program: The

corresponding trading program, based on Fig. 3, in

Multicharts’ PowerLanguage is shown in Fig. 4. This next-

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 119 This work is licensed under Creative Commons Attribution 4.0 International License.

day exit trading program has parameters SL and SS as the

percentage of stop-loss for buy and short. numSD specifies

the multiple of the standard deviation to be exceeded for the

difference between the current price and the predicted price

when determining whether to initiate buy (or short)

position. Length specifies the period to measure the

standard deviation. In the trading program, D2price is the

predicted price from deep learning models and is input as

the second data source (called “data2” in Multicharts). S is

the standard deviation, ok2buynextbar and

ok2sellshortnextbar are the Boolean variables track whether

buy or short decision is activated.

Line 7 of Fig .4 determines whether it is five

minutes before the close, Line 9 decides whether to buy or

short based on how far D2Price deviates from the current

price, Line 16 restricts the number of trades to once a day,

Line 24 executes the possible stop-loss, and finally Line 31

forces exit at the end of day.

Optimization in program trading is also conducted

to seek the maximum potential profit as the profitability

deep learning models (with specific parameters) can

achieve.

Figure 4: The code for next-day exit trading program

Data collection of the three traded merchandise:

Based on [14] and the data collected, three commonly

traded commodities, gold, soybean, and crude oil are used

for the experiments in this paper with their data

specification provided in Table 3.
TABLE 3

DATA SPECIFICATION OF THREE MERCHANDISES
 Soybean Crude oil Gold

Trading

days
Monday - Friday Monday - Friday

Monday –

Friday

Trading

hours

19:00 of prior day ~

13:20

17:00 of prior

day~16:00

18:00 of prior

day~17:00

Big point

value
50 USD 1000 USD 100 USD

Data

source

GLOBEX soybean

Futures provided by

e-signal

GLOBEX crude-oil

Futures provided by e-

signal

GLOBEX

gold Futures

provided by

e-signal

Period
2006/01/01 ~

2018/04/30

2007/03/01 ~

2018/04/30

2007/03/01 ~

2018/04/30

As explained, both the daily close price and the

price of five minutes before daily close are input for our

deep learning models. All the data collected for the trading

program is one-minute price data since the program in Fig.

4 needs to be executed on one-minute data for correctness.

Eighty percent of data is used as a training set and twenty

percent as a test set.

Parameter settings for LSTM and TCN models:

The CudnnLSTM in Cudnn library of GPU [13] is used for

the LSTM model in this work where the ranges of

parameter setting are shown in Table 4. Those for the TCN

model are shown in Table 5.
TABLE 4

PARAMETER SETTING FOR LSTM

HIDDEN LAYER 1 2

OF NEURON 3 6 7 50 80 3 6 7 50 80

TABLE 5

PARAMETER SETTING FOR TCN

Activation functions ReLu, SeLu

Filters 32, 64, 128, 256, 512, 1024

Dilations

[1,2,4,8], [1,2,4,8,16]. [1,2,4,8,16,32],

[1,2,4,8,16,32,64], [1,2,4,8,16,32,64,128],
[1,2,4,8,16,32,64,128,256],

[1,2,4,8,16,32,64,128,256,512]

Dropout_rate 0, 0.2, 0.5, 0.7

Measuring errors for the prediction models:

The coefficient of determination () from the scikit-learn

library where =r2_score(y_test,y_(test_pred)) is directly

used in our study. The MASE(train,test,pred) from [4] is

also used in our study and calculated based on the following

steps: (1) calculating the length n of train data set, (2) using

the diff function from numpy to mimic naïve prediction

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 120 This work is licensed under Creative Commons Attribution 4.0 International License.

(calculate continuous residuals), (3) summing up the

mimicked naïve prediction, taking absolute value, and

dividing by n-1 to get the denominator of MASE, (4)

similarly calculating the residuals among test and pred,

taking absolute value, using mean to sum and average, and

finally dividing by the denominator as acquired in (3) to get

MASE.

Customized loss function: The built-in loss

function in Keras can only reference y_true and y_pred

(Keras, 2018), and cannot be used to accommodate our

required directional error. However, the loss function in

Keras can be replaced as long as the new one is of the

Backend format from either TensorFlow or Theano.

Our customized loss function is modified from

MSE. The design principle of the proposed loss function is

to (a) maintain the original value at best, (b) reduce the

original penalty when the predicted direction is the same as

the actual, and (c) increate penalty when the predicted is

different from the actual. The exact procedure (as shown in

Fig. 5) includes (1) using tf.manip.roll function to copy the

Tensor for both actual values (y_true) and predicted values

(y_pred), and performing roll function to get both the actual

value as rolled by one day (y_true_1) and the predicted

value as rolled by one day (y_pred_1) as the two required

prices for the previous day, (2) getting the Tensor

difference between (y_true, y_pred) and (y_true_1,

y_pred_1), (3) using the difference in (2) to know whether

the actual direction (trueD = y_true – y_true_1) and

predicated directions (predD = y_pred – y_pred_1) is the

same or not, (4) multiplying trueD with predD, which will

be negative if the two directions are different and positive if

the two directions is the same, (5) and finally increasing or

reducing penalty based on (4).

The 0.01 in the last line of the loss function is the

adjusting factor for the penalty where 1, 0.1, 0.01, and

0.001 are tested initially. Values of 0.001 and 1 are

discarded as too little or too heavy the penalty is

introduced. 0.1 is also omitted as the process of deep

learning cannot converge, and 0.01 is the final choice as

shown here. This adjusting factor only affects the speed of

converging and using a multiple of 10 is sufficient.

Figure 5: Customized loss function

IV. EXPERIMENTS AND DISCUSSION

 Using the parameter sets for LSTM in Section III

and the error measurement of and MASE, the results of

three merchandises in Table 3 are shown in Table 6 and

Fig. 6. Eighty percent of data is used as a training set, and

twenty percent as a test set. All three merchandises show

high in the training set but drop for some parameter

settings in their test sets. MASE and reveal similar

trends. For Fig. 6 (only results from test sets are plotted),

more points at the right lower corner are better for

merchandise since for the more close to 1 the better, and

for MASE, the more close to 0 the better. Models for both

gold and soybean reveal a excellent learning effect in

LSTM, but not the case for crude oil.
TABLE 6

COMPARING RESULTS OF LSTM

Hidden

layer
1 1 1 1 1 2 2 2 2 2

neuron 3 6 7 50 80 3 6 7 50 80

Go

ld

train 0.994 0.994 0.994 0.994 0.991 0.993 0.993 0.992 0.989 0.988

test 0.965 0.967 0.966 0.968 0.945 0.963 0.965 0.965 0.94 0.94

MAS

E
0.764 0.746 0.759 0.733 1.028 0.802 0.775 0.758 1.087 1.085

So

ybe

an

train 0.975 0.981 0.977 0.977 0.981 0.97 0.978 0.978 0.981 0.982

test 0.911 0.921 0.946 0.947 0.946 0.784 0.886 0.87 0.945 0.951

MAS

E
0.68 0.647 0.497 0.492 0.491 1.196 0.822 0.887 0.499 0.462

Cr

ude

Oil

train 0.992 0.992 0.993 0.993 0.993 0.99 0.992 0.993 0.992 0.991

test 0.903 0.955 0.974 0.97 0.976 0.858 0.907 0.956 0.978 0.98

MAS

E
1.614 1.224 0.921 0.954 0.873 1.963 1.573 1.102 0.874 0.849

Figure 6: Error measurement for the test set from LSTM

Parameter sets for the TCN models in Section III

are also applied to three merchandises. TCN’s parameter

setting includes activation function, filters, dilations, and

dropout rate. They are evaluated individually.

SeLu and ReLu, as activation functions, are

compared, as shown in Table 7. All three merchandises

show high in the training set. SeLu performs better than

ReLu in test sets for both soybean and crude oil, where both

SeLu and ReLu perform similarly in gold. The same trend

is also observed in MASE. Here the setting for Filter is

256, [32] for Dilations, and 0.2 for the dropout rate. These

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 121 This work is licensed under Creative Commons Attribution 4.0 International License.

values for Filter, Dilations, and dropout_rate are fixed as

these values show better results when being tested

individually. A similar approach is used when comparing

the error measurement for different parameter settings. The

whole purpose here is to know which parameter setting in

TCN generates models of lower error measurement on the

three merchandise.

Filters for TCN are compared, as shown in Table

7. For test sets, gold has good results on all Filter

parameters, Crude oil performs well at around 128 to 512,

and soybean performs well at most values except 1024. The

same trend is also observed in MASE. Here the setting for

other parameters is: SeLu, Dilations:[32], and

Dropour_rate:0.2.

Dilations for TCN are compared, as shown in Table 8. For

test sets, gold has good results on all Dilations parameters,

crude oil performs well at 16, 32, and 256, and soybean

performs well at 8, 16, and 32. The same trend is also

observed in MASE. Here the setting for other parameters is

SeLu, Filters: 256, and Dropour_rate:0.2.

Dropout_rate for TCN is compared as shown in

Table 9. For test sets, gold has good results at 0.2 and 0.5,

and crude oil and soybean both perform well at 0.2. The

same trend is also observed in MASE. Here the setting for

other parameters is SeLu, Filters: 256, and Dilations:[32].

All the above parameter settings are applied to the trading

program to calculate its profitability to analyze the

relationship between traditional error measurement (and

MASE) and profitability.
TABLE 7

COMPARING RESULTS FOR ACTIVATION FUNCTIONS OF TCN

Activation function SeLu ReLu

Gold

train 0.988 0.985

test 0.966 0.963

MASE 0.753 0.797

Soybean

train 0.975 0.975

test 0.94 0.909

MASE 0.526 0.652

Crude Oil

train 0.992 0.979

test 0.974 0.484

MASE 0.95 4.132

TABLE 8

COMPARING RESULTS FOR PARAMETER SETS OF FILTERS OF TCN

Filters 32 64 128 256 512 1024

Gold

train 0.993 0.991 0.988 0.988 0.984 0.985

test 0.969 0.969 0.968 0.966 0.962 0.956

MASE 0.704 0.705 0.731 0.753 0.806 0.887

Soybean train 0.953 0.968 0.973 0.975 0.975 0.969

test 0.924 0.919 0.925 0.94 0.924 0.878

MASE 0.638 0.631 0.628 0.526 0.614 0.834

Crude Oil

train 0.988 0.988 0.991 0.992 0.992 0.987

test 0.681 0.852 0.928 0.974 0.947 0.742

MASE 2.426 2.132 1.597 0.95 1.467 2.933

TABLE 9

COMPARING RESULTS FOR PARAMETER SETS OF DILATIONS OF TCN

Dilations 8 16 32 64 128 256 512

Gold

train 0.99 0.988 0.988 0.986 0.985 0.978 0.976

test 0.968 0.966 0.966 0.966 0.963 0.957 0.953

MASE 0.724 0.749 0.753 0.744 0.796 0.87 0.925

Soybean

train 0.976 0.974 0.975 0.966 0.96 0.954 0.94

test 0.949 0.921 0.94 0.91 0.928 0.885 0.897

MASE 0.48 0.595 0.526 0.721 0.612 0.846 0.771

Crude Oil

train 0.992 0.992 0.992 0.992 0.992 0.992 0.989

test 0.94 0.976 0.974 0.895 0.952 0.971 0.896

MASE 1.46 0.906 0.95 1.567 1.156 0.988 1.973

TABLE 10

COMPARING RESULTS FOR PARAMETER SETS OF DROPOUT_RATE OF TCN

Dropout_rate 0 0.2 0.5 0.7

Gold

train 0.981 0.988 0.99 0.991

test 0.958 0.966 0.967 0.946

MASE 0.857 0.753 0.729 0.933

Soybean

train 0.945 0.975 0.929 0.641

test 0.834 0.94 0.639 -0.224

MASE 1.04 0.526 1.562 3.124

Crude

Oil

train 0.986 0.992 0.991 0.987

test 0.796 0.974 0.893 0.773

MASE 3.065 0.95 1.492 3.247

Analyzing the Profitability of Predicted Prices and Error

Measurement

From the previous results, and MASE

demonstrates the same trend on almost all parameter sets.

Thus, for simplicity, we only use as the error

measurement when studying the relationship between

profitability and traditional error measurement.

To measure the profitability of deep learning

models, we use two years’ out-sample data with the trading

program in Fig. 4 for the initial capital of 100,000.0 US

dollars to calculate the profitability of all parameter sets

from LSTM and TCN models as shown in Tables 4 and 5.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 122 This work is licensed under Creative Commons Attribution 4.0 International License.

The average and maximum profitability for three

merchandize in all models and parameter sets are shown on

the left side of Table 11.

Comparing to LSTM, TCN provides higher

profitability for gold. The standard deviation for the

profitability and the averaged maximum drawdown (MDD)

for TCN are both lower (and better) than those from LSTM.

The relationship between profitability and error

measurement of the learning models of gold is provided in

Fig. 7. The (orange-colored) circle represents LSTM, and

the (blue) triangle is for TCN. More dots at upper right

corners indicate their models reveal a higher positive

correlation between profitability and error measurement

(i.e., lower error leads to higher profits). For gold, this

correlation coefficient is -0.55 for LSTM and 0.25 for TCN.

Going down to specific parameter settings, When (hidden

layers, # of neuron) =(1, 80), (2, 50), (2, 80), the LSTM

model gets the highest profit. The highest one for TCN is

(SeLu, 256, [1,2,4,8,16,32], 0.2).

Soybean’s TCN models also provide higher

profitability than LSTM’s. The standard deviation for the

profitability from TCN is also lower than that of LSTM’s.

The relationship between profitability and error

measurement of corresponding models of soybean is shown

in Fig. 8. For soybean, the correlation coefficient is -0.24

for LSTM and 0.2 for TCN. Going down to specific

parameter settings. When (hidden layers, # of neuron) = (2,

80), the LSTM model gets the highest profit. The highest

one for TCN is also (SeLu, 256, [1,2,4,8,16,32], 0.2).

The profitability patterns of crude oil from LSTM

models are quite unstable. TCN models of crude oil provide

higher averaged profitability with lower standard deviation

for better stability and lower MDD for low exposed risk.

The relationship between profitability and error

measurement of corresponding models of crude oil is

shown in Fig 9. For crude oil, the correlation coefficient is -

0.82 for LSTM and 0.01 for TCN. Going down to specific

parameter settings. When (hidden layers, # of neuron) = (2,

3) (2,6), the LSTM model gets the highest profit. The

highest one for TCN is also (SeLu, 256, [1,2,4,8,16,32],

0.2).

From these analysis, we have the following

findings: (1) TCN models provide positive correlation

between error measurement () and profitability, (2)

parameter sets from TCN provide much stable profitability

than LSTM, especially the parameter set (SeLu, 256,

[1,2,4,8,16,32], 0.2) of TCN get highest profitability in all

three merchandise, (3) profitability fluctuates greatly in

crude oil as well as its error measurement from both LSTM

and TCN models. The correlation between profitability and

error measurement for crude oil is also the most unstable

among the three tested merchandise.

Figure 7: Relationship of profitability and error

measurement on gold

Figure 8: Relationship of profitability and error

measurement on soybean

Figure 9: Relationship of profitability and error

measurement on crude oil

Adding Customized Loss Functions for Re-Evaluation

and Comparison
Granger (1999) suggested that the learning model

and loss function determine the performance of machine

learning. We have tested all reasonable parameter sets of

LSTM and TCN models, and we now proceed to the

experiments of adjusting loss function as described in

Section III.

After creating the loss function (with directional

error considered) and combining it into the similar Keras

programs as in Section III, we repeat the same experiments

and analysis from Section IV for similar models with the

new loss function inserted. Due to the size limit for this

paper, results similar to Table 6 from the re-evaluations are

omitted, but their resulting diagrams (also for test sets only)

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 123 This work is licensed under Creative Commons Attribution 4.0 International License.

are shown in Fig. 10. For test sets, the error measurement

for crude oil degrades much further after applying the loss

function, and those for soybean and gold improve slightly.

Though not shown here, the training sets for three

merchandise still all have similarly high .

Figure 10: The relationship among two traditional error

measurements, MASE and , for LSTM models with the

customized loss function

In TCN with the customized loss function,

parameter sets for activation functions, filters, dilations, and

dropout rates are all tested separately, and data similar to

Tables 7 to 10 are collected. Due to space limitations, these

detailed data are omitted with only their summary reported

here. For activation functions, training sets for three

merchandises are all with high . In test sets, ReLu and

SeLu both perform reasonably for gold and soybean, and

SeLu performs better than ReLu in crude oil. Both and

MASE reveal the same trend. Here the setting for other

parameters is: Filters: 256, Dilations:[32], and

Dropour_rate:0.2.

For TCN’s Filters, in test sets, gold has good

results on all parameters, crude oil performs well around

128 to 512, and soybean performs well in most values at 32,

512, 1024 with little difference. The same trend is observed

in MASE. Here the setting for other parameters is: SeLu,

Dilations:[32], and Dropour_rate:0.2.

For TCN’s Dilations, in test sets, gold and crude

oil both reveal good results on all parameters, and soybean

performs well in values from 8 to 128. The same trend is

observed in MASE. Here the setting for other parameters is

SeLu, Filters:256, and Dropour_rate:0.2.

For TCN’s Dropout_rate, in test sets, gold and soybean

both reveal good results at 0 and 0.2, and crude oil performs

well at 0.5. The same trend is observed in MASE. Here the

setting for other parameters is SeLu, Filters:256, and

Dilations:[32].

Comparing the error measurement for TCN with

and without customized loss function, only crude oil

displays worse performance. Gold and soybean perform

slightly better. This finding is the same as what found from

LSTM and matches the initial observation that the error

measurement for crude oil is worst among the three

merchandises for both LSTM and TCN.

Comparing Profitability for Those with Loss Functions

and All Others

The average and maximum profitability for three

merchandize in all models and parameter sets with the

customized loss function are shown in the right side of

Table 11.

Comparing to LSTM, TCN models for gold again

provide higher profitability with lower standard deviation

for better stability and lower MDD for low exposed risk.

The relationship between profitability and error

measurement for models of gold with the customized loss

function is provided in Fig. 11. For gold, the correlation

coefficient is -0.28 for LSTM and 0.06 for TCN. The

profitability does increase after the customized functions

are added for almost all parameter sets of TCN and LSTM.

Furthermore, most points from both LSTM and TCN

appear at upper right corners (i.e., high profitability with

low error measurement), which indicates the customized

loss function performs stably for both LSTM and TCN

models on gold.

Similarly, TCN models for soybean provide higher

profitability with lower standard deviation for better

stability than those from LSTM. The relationship between

profitability and error measurement for models of soybean

is shown in Fig. 12. For soybean, the correlation coefficient

is -0.003 for LSTM and -0.07 for TCN. With customized

loss function added, the profit decreases for LSTM models

but increases in the TCN model. Most points from TCN

appear at upper right corners, but not the case for those of

LSTM. This indicates the customized loss function

performs stably for TCN but not for LSTM on soybean.

TCN models for crude oil also provide higher

profitability with lower standard deviation for better

stability than those from LSTM. The relationship between

profitability and error measurement for models of crude oil

is shown in Fig. 13. For crude oil, the correlation

coefficient is -0.55 for LSTM and -0.33 for TCN. With the

customized loss function added, the profit decreases for

LSTM models, but increases in the TCN model. Almost all

points from TCN appear at upper right corners, but not the

case for those of LSTM. This indicates the customized loss

function performs stably for TCN but not for LSTM in

crude oil.

From results of all experiments in Section IV, we

can summarize as follows: (1) TCN with customized

functions perform best across all merchandise in terms of

profitability and error measurement when either compared

to the cases for LSTM or the cases for TCN without loss

functions, (2) in LSTM, models with customized loss

function only improve profitability on gold, but not that for

soybean nor that for crude oil, (3) for a merchandise, if the

error measurement for either LSTM or TCN model is low

(gold and soybean), the profitability is usually good, and

the loss function could improve profitability. On the

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 124 This work is licensed under Creative Commons Attribution 4.0 International License.

contrary, if the error measurement for either LSTM or TCN

model is high (crude oil), the profitability usually fluctuate

considerably, and the loss function cannot help, (4) the

relationship between profitability and error measurement

for models of LSTM and TCN with or without customized

loss function is not, as commonly believed, highly

positively correlated (i.e., the more precise the predicted

value, the more trading profit) since the correlation

coefficients are rarely higher than 0.5 in all our

experiments, and (5) the customized loss functions perform

better in TCN than in LSTM.

Figure 11: Profitability and error measurement for models

with customized loss function from gold

Figure 12: Profitability and error measurement for models

with customized loss function from soybean

Figure 13: Profitability and error measurement for models

with customized loss function from crude oil

TABLE 11
PERFORMANCE SUMMARY OF ALL MODELS FOR THREE MERCHANDISES

 LSTM TCN

LSTM＋
customized

loss fn.

TCN+
customized

loss fn.

Gold

Max. profit 15535 20990 18412 21308

Avg. profit
10749 15672 13714 15876

Standard

dev.

5550 3835 5989 2422

Avg. MDD 12217 10540 10343 9475

Soybean

Max. profit 11925 13775 9900 15763

Avg. profit
8485 10255 6039 10948

Standard

dev.

3578 2854 2959 3867

Avg. MDD 5561 6446 5609 5668

Crude

Oil

Max. profit 34897 20896 12308 27149

Avg. profit
15596 17195 7109 18781

Standard

dev.

10568 6410 3903 5025

Avg. MDD 21435 12716 8572 13124

V. CONCLUSION

 In this work, a new validation approach is

proposed for evaluating the quality of deep learning models

when applied to merchandise price data (as time series).

The proposed approach explores the relationships between

profitability and error measurements of deep learning

models. The profitability of learning models is measured by

techniques from program trading with a trading program

matching the deep learning prediction model (a next-day

exit trading program in this paper). Besides, a new

(customized) loss function considering both magnitude-

based and direction-based error is introduced to improve the

trading profitability of deep learning models.

A three-stage process of validation, as proposed in

Section III, is conducted on three commonly traded

merchandise in this paper, with all experiment results

displayed and analyzed in Section IV. Our findings can be

summarized as follows: (1) TCN with customized functions

perform best across all merchandise in terms of profitability

and error measurement when either compared to the cases

for LSTM or the cases of TCN without loss functions, (2) in

LSTM, models with customized loss function only

improves profitability on gold, but not that for soybean nor

that for crude oil, (3) for a merchandise, if the error

measurement for either LSTM or TCN model is low (gold

and soybean), the profitability is usually excellent and

stable, and the proposed loss function could improve

profitability. On the contrary, if the error measurement for

either LSTM or TCN model is high (crude oil), the

profitability usually fluctuate considerably, and the loss

function cannot help, (4) the relationship between

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-10, Issue-1 (February 2020)

www.ijemr.net https://doi.org/10.31033/ijemr.10.1.19

 125 This work is licensed under Creative Commons Attribution 4.0 International License.

profitability and error measurement for models of LSTM

and TCN with or without customized loss function is not, as

commonly believed, highly positively correlated (i.e., the

more precise the predicted value, the more trading profit)

since the correlation coefficients are rarely higher than 0.5

in all our experiments, and (5) the customized loss

functions perform better in TCN than in LSTM.

REFERENCES

[1] Bai, S., Kolter, J.Z., & Koltun, V. (2018). An empirical

evaluation of generic convolutional and recurrent networks

for sequence modeling. Available at:

https://arxiv.org/pdf/1803.01271.pdf.

[2] Brownlee, J. (2019). Better deep learning. Australia:

Machine learning Mastery.

[3] Chollet, F. (2017). Deep learning with Python. USA:

Manning Publications.

[4] Davidson-Pilon, C. (2013). Computes the MEAN-

ABSOLUTE SCALED ERROR forecast error for univariate

time series prediction. Available at:

 https://github.com/CamDavidsonPilon/Python-

Numerics/blob/master/TimeSeries/MASE.py. Accessed on

18 January 2019.

[5] Greff, K., Srivastava, R. K., Koutnik, J., Steunebring, B.

R., & Schmidhuber, J. (2017). LSTM: A search space

odyssey. IEEE Transactions on Neural Networks and

Learning Systems, 28(10), 2222–2232.

[6] Hochreiter, S., Klambauer, G., Unterthiner, T., & Mayr,

A. (2017). Self-normalizing neural networks. Proceedings

of the NIPS 2017, Advances in Neural Information

Processing Systems 30. Availabel at:

https://papers.nips.cc/paper/6698-self-normalizing-neural-

networks.pdf.

[7] Hyndman, R.J., Koehler, A.B. (2006). Another look at

measures of forecast accuracy. Proceedings of the

International Journal of Forecasting, 22(4), 679-688.

https://doi.org/10.1016/j.ijforecast.2006.03.001.

[8] Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012).

ImageNet classification with deep convolutional neural

network. NIPS2012: Proceedings of the 25th International

Conference on Neural Information Processing Systems, 1,

1097-1105.

[9] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. Nature, 521, 436-444.

[10] Leinweber, D.J. (2007). Stupid data miner tricks:

Overfitting the S&P 500. The Journal of Investing, 16(1),

15-22.

[11] Li, H., Shen, Y., & Zhu, Y. (2018). Stock price

prediction using attention-based multi-input LSTM.

Proceedings of the 10th Asian Conference on Machine

Learning (PMLR 95), pp. 454-469.

[12] Multicharts. (2019). MultiCharts12. Available at:

https://www.multicharts.com/. Accessed on 18 June 2019.

[13] NVDIA. (2018). cuDNN developer guide. Available at:

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-

guide/index.html. Aaccessed on 2 October 2019.

[14] Pant, N. (2017). A guide for time series prediction

using recurrent neural networks(LSTMS). Available at:

https://blog.statsbot.co/time-series-prediction-using-

recurrent-neural-networks-lstms-807fa6ca7f. Accessed on 6

September 2018.

[15] Pardo, R. (2008). The evaluation and optimization of

trading strategies. (2
nd

 ed.) USA: John Wiley.

[16] Schoneburg, E. (1990). Stock price prediction using

neural networks: A project report. Proceedings of the

Neurocomputing 2, 17-27.

[17] Walter, J., Ritter, H., & Schulten, K. (1990). Non-

linear Prediction with Self-organizing Maps. Proceedings

of the IJCNN International Joint Conference on Neural

Networks, pp. 17-21.

