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ABSTRACT 

Researches on predicting prices (as time series) from 

deep learning models usually use a magnitude-based error 

measurement (such as ).  However, in trading, the error in 

the predicted direction could affect trading results much more 

than the magnitude error.  Few works consider the impact of 

ill-predicted trading direction as part of the error 

measurement.  

In this work, we first find parameter sets of LSTM 

and TCN models with low magnitude-based error 

measurement, and then calculate the profitability using 

program trading. Relationships between profitability and 

error measurements are analyzed.   

We also propose a new loss function considering both 

directional and magnitude error for previous models for re-

evaluation. Three commodities are tested: gold, soybean, and 

crude oil (from GLOBEX). Our findings are: with given 

parameter sets, if merchandise (gold and soybean) is of low 

averaged magnitude error, then its profitability is more stable. 

The proposed loss function can further improve profitability.  

If it is of larger magnitude error (crude oil), then its 

profitability is unstable, and the proposed loss function cannot 

improve nor stabilize the profitability.   

Furthermore, the relationship between profitability 

and error measurement for models of LSTM and TCN with or 

without customized loss function is not, as commonly believed, 

highly positively correlated (i.e., the more precise the 

predicted value, the more trading profit) since the correlation 

coefficients are rarely higher than 0.5 in all our experiments. 

However, the customized loss functions perform better in TCN 

than in LSTM.   

 

Keywords— Deep Learning, Price Prediction, Program 

Trading, Time Sequence, LSTM, TCN 
 
 

I.  INTRODUCTION 
 

Predicting future values of time series is the topic 

of many previous works [10,14,16]. Using deep learning 

provides better progress than that of using linear models 

[9,14]. However, few works provide the guideline on 

applying the forecasted values in actual trading, as well as 

measuring the profitability concerning the error 

measurement (such as  and MSE).  

In actual trading, predicting the trading direction 

(i.e., to buy or to sell) incorrectly (called directional error in 

this paper) usually results in bigger loss than the magnitude 

error from the difference between the predicted and actual 

values. When the predicted value has a large magnitude 

error from the actual one, but with the correct trading 

direction, this may lead to profit (Fig.1.a). A smaller 

magnitude error with the incorrect directional prediction 

may lead to a larger loss (Fig. 1.b). We study how to 

incorporate directional error into error measurement for 

deep learning models in this paper. 

Figure 1: (a) Correct directional prediction with larger 

magnitude error; (b) incorrect directional prediction with 

smaller magnitude error  

Different merchandise may need different deep 

learning models. LSTM is suitable for merchandise with 

lower volatility [5, 14], TCN may perform better on 

merchandises with higher volatility due to its pre-filtered 

local patterns [11]. Finding suitable deep learning models 

and parameter sets for studied merchandises is the first step 

to study their profitability. 

Program trading can systematically and repeatedly 

explore the profitability of learning models. The utilized 

trading program should match the timing where learning 

models generate values to reduce unnecessary errors.      

We explore the related literature in Section II. In 

Section III, a three-staged process is proposed to evaluate 

magnitude error for parameter settings of deep learning 

models. The specific trading program and the loss function 

incorporating both directional and magnitude error are also 

introduced in Section III. Section IV details the results of 

experiments with discussion.  The conclusion comes in 

Section V.   

 
 

(a) (b) 
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II.  RELATED LITERATURE 
 

Time-series: Variables inherently ordered by time 

are called time series, such as stock or currency price. They 

are usually not expressible as linear functions since the 

volatility and fluctuation may change significantly along 

the time. With a good learning model and long enough data, 

a self-adaptive learning model may provide the right 

prediction [17].  Deep learning models is one of this kind. 

Neural networks as learning models: Neural 

networks use neuron, layers of neurons, and adjustable 

weights to capture the non-linear relationship among input 

and output [3]. The neuron mimics the human brain to work 

as simple units, which are highly connected. Weights on the 

links may substantially affect the networks, and overfitting 

problem may occur quickly. The number of layers, the 

number of neurons in each layer, and parameters such as 

the dropout rate should be regulated to avoid overfitting 

problems. 

Deep learning: Deep learning is a multi-layered 

neural network with sophisticated routing among inter-

connected neurons and layers. In traditional data mining, 

features are usually manually specified in advance, and this 

is called feature engineering. For data with inherently 

complex features, feature engineering is complicated. Deep 

learning achieves automatic feature engineering through 

those layers of neurons [3].  However, the quality of deep 

learning is profoundly affected by its training process. For 

example, the gradient should be managed appropriately to 

avoid gradient explosion or gradient vanishing problems.    

Deep learning for time series: With cross-layered 

connectivity, recurrent neural network (RNN) allows deep 

learning on time series [3]. By redirecting the output value 

back to the input, RNN acquires the “memory” effect. 

Uncontrolled utilization of memory may lead to more noise.  

LSTM (Long Short Term Memory) maintains the memory 

effect of RNN but only keeps important one for future 

usage.  Pant in [14] successfully applies LSTM to predict 

the currency fluctuation of the US dollar and Russian 

Ruble.  

CNN (Convolution Neural Networks) excels at 

image recognition but performs less robust in time series 

prediction. Bai et al. (2018) proposes TCN (Temporal 

Convolutional Networks) for time-series prediction and get 

better results than LSTM in many situations.  TCN, similar 

to CNN, acquires signals simultaneously, where RNN 

acquires signals sequentially. TCN regulates the sliding 

windows for convolution to enable time series prediction. 

In this paper, TCN is also explored, in addition to LSTM.   

Activation functions: The purpose of activation 

function in neural networks is to ensure its input and output 

are not linearly related, as a linear relationship between 

input and output reduces the expressiveness of the networks 

significantly. Commonly used non-linear functions are 

Sigmoid, tanh, and ReLu [16]. Sigmoid is commonly used 

for classification problems as it maps the input to value 

between 0 and 1. Tanh and ReLu are commonly used for 

non-classification problems, where ReLu speeds up the 

training without a gradient vanishing problem [8]. 

Hochreiter in [6] further provides another activation 

function, SeLu, for time series problems. SeLu can 

converge well, avoid gradient explosion or vanishing 

problems, and perform well in deeper layered networks.  

Thus, both SeLu and ReLu are tested in our TCN 

experiments. However, due to the limitation of Cudnn in 

our LSTM model, only Tanh can be used for the activation 

function in our LSTM testing. The definition of SeLu 

function is provided as below:    

 
 

Loss function: The quality of regression is 

improved by minimizing the loss function. The loss 

function usually measures the absolute or squared distance 

between the actual and predicted values. The functions of 

MAE and MSE are expressed as follows: 

 
 

MAE tends to find local optimum when the 

gradient increases. MSE could be affected by outliers where 

normalization can reduce the problem, thus, MSE is more 

popular than MAE [2]. 

Measuring the quality of deep learning models: 

MSE or coefficient of determination ( ) are used in deep 

learning to measure the quality of the learning.  is 

developed from MSE with variance as the denominator to 

ensure its values always range between 0 and 1 and allow 

comparison across different features. Its function is as 

follow: 

 
When the number of samples increases,  may 

lose accuracy as its numerator increases un-proportionally. 

Hyndman and Koehler in [7] proposed the use of MASE to 

reduce the problem. MASE uses the naïve projection of in-

sample data as the denominator to reduce the errors from 

out-sample data and achieves better normalization. Its 

function is expressed as follows: 
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Program trading: Program trading uses a set of 

fixed rules expressed as programs to buy and sell 

merchandise. It can apply to merchandise with historical 

price data repeatedly to ensure the provided rules for 

specific merchandise are indeed profitable (Keith, 2000).  

Multicharts [12] is used in this research due to its wide user 

base and easy readability. 

 

III.  SYSTEM DESIGN AND 

IMPLEMENTATION 
 

Our proposed system design and experiments are 

divided into three stages and expressed in Fig. 2. The first 

stage focuses on finding models and settings from LSTM 

and TCN with error measured by  and MASE. In the 

second stage, the predicted values are used in the trading 

program to study their profitability and relationship with 

error measurement (  and MASE). The proposed 

customized loss function considering both directional and 

magnitude error is introduced in the third stage, where the 

works in the first two stages are repeated for similar models 

with this modification on loss function inserted. Results 

from these experiments are analyzed to understand the 

potential improvements.  

 
Figure 2: Three-staged system design and experiments 

 

Use trading programs with the predicted next-

day’s close prices: Most works on deep learning models 

highlight their contribution by measuring the improvement 

on  for the proposed models. Our research further pursues 

the trading profitability of predicted values as another 

possible measurement for the quality of learning models.  

The utilized trading model should match how the next-day 

close price is predicted. The trading model should be kept 

simple enough and not introduce other factors to dilute the 

effect of the predicted next-day close price from the 

learning models. As shown in Fig. 3, we propose to enter 

the market five minutes before the close of today and exit 

the position before the end of the next trading day. A buy 

position is entered when the predicted close price for the 

next day is proportionally higher than today’s close price.  

To reduce unexpected risk, a percentage stop-loss is used to 

liquidate position if a certain percentage of loss relative to 

price is reached.  The exact proportion to today’s close 

price for entry and stop-loss is found by the optimization 

mechanism from program trading [15]. The short position is 

done with the exact opposite rules. If this simple trading 

program can profit, we can attribute most of the success to 

the precision of the predicted next-day close value.  

 
 

Figure 3: A trading model utilizes the predicted next-day 

close price at around today’s close 

 

In existing researches, today’s close price is 

always used to predict the next-day close price [9, 14]. In 

reality, when today’s close price is available for the 

prediction, the market is already closed for trading. This 

problem should be fixed when trading profitability is 

studied. We use the price five minutes before the close to 

predicting the next-day close price in the proposed trading 

program. To verify the feasibility of this modification, the 

fluctuation of the last five minutes before close for the three 

merchandise studied in our experiments are analyzed. The 

average price fluctuation for these merchandise in the last 

five minutes is less than 0.01% as shown in Table 1. We 

further use the actual close price and the price five minutes 

before the close as two different inputs for the same LSTM 

models. The goal is to know how different the predicted 

next-day values are from the actual next-day close. As 

shown in Table 2, the  for these two different inputs are 

almost the same. 
TABLE I 

THE PRICE DIFFERENCE BETWEEN TODAY’S CLOSE AND FIVE MINUTES 

BEFORE THE CLOSE  

 SOYBEAN CRUDE OIL GOLD 

AVERAGE 0.075(0.007%) 0.002(0.003%) -0.023(-0.002%) 

    
MAXIMUM 6.0(0.544%) 0.2(0.267%) 6.0(0.444%) 

 

MINIMUM -3.75(-0.340%) -0.19(-0.253%) -11.5(-0.851%) 

    
STANDARD 

DEVIATION 

1.046 0.039 0.769 

 
TABLE 2 

 OF PREDICTED AND ACTUAL VALUES, USING ACTUAL CLOSE OR PRICE 

FIVE MINUTES BEFORE CLOSING AS INPUTS   

 SOYBEAN CRUDE OIL GOLD 

CLOSE PRICE 0.945 0.972 0.967 

 

5 MIN BEFORE 

CLOSE 

0.945 0.976 0.963 

 

The next-day exit trading program: The 

corresponding trading program, based on Fig. 3, in 

Multicharts’ PowerLanguage is shown in Fig. 4. This next-
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day exit trading program has parameters SL and SS as the 

percentage of stop-loss for buy and short.  numSD specifies 

the multiple of the standard deviation to be exceeded for the 

difference between the current price and the predicted price 

when determining whether to initiate buy (or short) 

position. Length specifies the period to measure the 

standard deviation. In the trading program, D2price is the 

predicted price from deep learning models and is input as 

the second data source (called “data2” in Multicharts). S is 

the standard deviation, ok2buynextbar and 

ok2sellshortnextbar are the Boolean variables track whether 

buy or short decision is activated.  

Line 7 of Fig .4 determines whether it is five 

minutes before the close, Line 9 decides whether to buy or 

short based on how far D2Price deviates from the current 

price, Line 16 restricts the number of trades to once a day, 

Line 24 executes the possible stop-loss, and finally Line 31 

forces exit at the end of day.        

Optimization in program trading is also conducted 

to seek the maximum potential profit as the profitability 

deep learning models (with specific parameters) can 

achieve. 
 

 
Figure 4: The code for next-day exit trading program 

 

Data collection of the three traded merchandise: 

Based on [14] and the data collected, three commonly 

traded commodities, gold, soybean, and crude oil are used 

for the experiments in this paper with their data 

specification provided in Table 3. 
TABLE 3 

DATA SPECIFICATION OF THREE MERCHANDISES   
 Soybean Crude oil Gold 

Trading 

days 
Monday - Friday Monday - Friday 

Monday – 

Friday 

 

Trading 

hours 

19:00 of prior day ~ 

13:20 

17:00 of prior 

day~16:00 

18:00 of prior 

day~17:00 

 

Big point 

value 
50 USD 1000 USD 100 USD 

Data 

source 

GLOBEX soybean 

Futures provided by 

e-signal 

GLOBEX crude-oil 

Futures provided by e-

signal 

GLOBEX 

gold Futures 

provided by 

e-signal 

 

Period 
2006/01/01 ~ 

2018/04/30 

2007/03/01 ~ 

2018/04/30 

2007/03/01 ~ 

2018/04/30 

 

As explained, both the daily close price and the 

price of five minutes before daily close are input for our 

deep learning models. All the data collected for the trading 

program is one-minute price data since the program in Fig. 

4 needs to be executed on one-minute data for correctness.  

Eighty percent of data is used as a training set and twenty 

percent as a test set. 

Parameter settings for LSTM and TCN models: 

The CudnnLSTM in Cudnn library of GPU [13] is used for 

the LSTM model in this work where the ranges of 

parameter setting are shown in Table 4. Those for the TCN 

model are shown in Table 5. 
TABLE 4 

PARAMETER SETTING FOR LSTM  

HIDDEN LAYER  1 2 

# OF NEURON 3 6 7 50 80 3 6 7 50 80 

 

TABLE 5 

PARAMETER SETTING FOR TCN   

Activation functions ReLu, SeLu 

Filters 32, 64, 128, 256, 512, 1024 

Dilations 

[1,2,4,8], [1,2,4,8,16]. [1,2,4,8,16,32], 

[1,2,4,8,16,32,64], [1,2,4,8,16,32,64,128],  
[1,2,4,8,16,32,64,128,256], 

[1,2,4,8,16,32,64,128,256,512] 

 

Dropout_rate 0, 0.2, 0.5, 0.7 

 

Measuring errors for the prediction models: 

The coefficient of determination ( ) from the scikit-learn 

library where =r2_score(y_test,y_(test_pred)) is directly 

used in our study. The MASE(train,test,pred) from [4] is 

also used in our study and calculated based on the following 

steps: (1) calculating the length n of train data set, (2) using 

the diff function from numpy to mimic naïve prediction 
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(calculate continuous residuals), (3) summing up the 

mimicked naïve prediction, taking absolute value, and 

dividing by n-1 to get the denominator of MASE, (4) 

similarly calculating the residuals among test and pred, 

taking absolute value, using mean to sum and average, and 

finally dividing by the denominator as acquired in (3) to get 

MASE.  

Customized loss function: The built-in loss 

function in Keras can only reference y_true and y_pred 

(Keras, 2018), and cannot be used to accommodate our 

required directional error.  However, the loss function in 

Keras can be replaced as long as the new one is of the 

Backend format from either TensorFlow or Theano.   

Our customized loss function is modified from 

MSE. The design principle of the proposed loss function is 

to (a) maintain the original value at best, (b) reduce the 

original penalty when the predicted direction is the same as 

the actual, and (c) increate penalty when the predicted is 

different from the actual. The exact procedure (as shown in 

Fig. 5) includes (1) using tf.manip.roll function to copy the 

Tensor for both actual values (y_true) and predicted values 

(y_pred), and performing roll function to get both the actual 

value as rolled by one day (y_true_1) and the predicted 

value as rolled by one day (y_pred_1) as the two required 

prices for the previous day, (2) getting the Tensor 

difference between (y_true, y_pred) and (y_true_1, 

y_pred_1), (3) using the difference in (2) to know whether 

the actual direction (trueD = y_true – y_true_1) and 

predicated directions (predD = y_pred – y_pred_1) is the 

same or not, (4) multiplying trueD with predD, which will 

be negative if the two directions are different and positive if 

the two directions is the same, (5) and finally increasing or 

reducing penalty based on (4).  

The 0.01 in the last line of the loss function is the 

adjusting factor for the penalty where 1, 0.1, 0.01, and 

0.001 are tested initially. Values of 0.001 and 1 are 

discarded as too little or too heavy the penalty is 

introduced.  0.1 is also omitted as the process of deep 

learning cannot converge, and 0.01 is the final choice as 

shown here. This adjusting factor only affects the speed of 

converging and using a multiple of 10 is sufficient. 

 
Figure 5: Customized loss function 

 

IV.  EXPERIMENTS AND DISCUSSION 
 

 Using the parameter sets for LSTM in Section III 

and the error measurement of  and MASE, the results of 

three merchandises in Table 3 are shown in Table 6 and 

Fig. 6. Eighty percent of data is used as a training set, and 

twenty percent as a test set. All three merchandises show 

high  in the training set but  drop for some parameter 

settings in their test sets. MASE and  reveal similar 

trends. For Fig. 6 (only results from test sets are plotted), 

more points at the right lower corner are better for 

merchandise since for  the more close to 1 the better, and 

for MASE, the more close to 0 the better.  Models for both 

gold and soybean reveal a excellent learning effect in 

LSTM, but not the case for crude oil. 
TABLE 6 

COMPARING RESULTS OF LSTM   

Hidden 

layer 
1 1 1 1 1 2 2 2 2 2 

neuron 3 6 7 50 80 3 6 7 50 80 

Go

ld 

train 0.994 0.994 0.994 0.994 0.991 0.993 0.993 0.992 0.989 0.988 

test 0.965 0.967 0.966 0.968 0.945 0.963 0.965 0.965 0.94 0.94 

MAS

E 
0.764 0.746 0.759 0.733 1.028 0.802 0.775 0.758 1.087 1.085 

So

ybe

an 

train 0.975 0.981 0.977 0.977 0.981 0.97 0.978 0.978 0.981 0.982 

test 0.911 0.921 0.946 0.947 0.946 0.784 0.886 0.87 0.945 0.951 

MAS

E 
0.68 0.647 0.497 0.492 0.491 1.196 0.822 0.887 0.499 0.462 

Cr

ude 

Oil 

train 0.992 0.992 0.993 0.993 0.993 0.99 0.992 0.993 0.992 0.991 

test 0.903 0.955 0.974 0.97 0.976 0.858 0.907 0.956 0.978 0.98 

MAS

E 
1.614 1.224 0.921 0.954 0.873 1.963 1.573 1.102 0.874 0.849 

 

 
Figure 6: Error measurement for the test set from LSTM 

 

Parameter sets for the TCN models in Section III 

are also applied to three merchandises. TCN’s parameter 

setting includes activation function, filters, dilations, and 

dropout rate. They are evaluated individually.  

SeLu and ReLu, as activation functions, are 

compared, as shown in Table 7. All three merchandises 

show high  in the training set. SeLu performs better than 

ReLu in test sets for both soybean and crude oil, where both 

SeLu and ReLu perform similarly in gold.  The same trend 

is also observed in MASE.  Here the setting for Filter is 

256, [32] for Dilations, and 0.2 for the dropout rate. These 
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values for Filter, Dilations, and dropout_rate are fixed as 

these values show better results when being tested 

individually.  A similar approach is used when comparing 

the error measurement for different parameter settings.  The 

whole purpose here is to know which parameter setting in 

TCN generates models of lower error measurement on the 

three merchandise.   

Filters for TCN are compared, as shown in Table 

7. For test sets, gold has good results on all Filter 

parameters, Crude oil performs well at around 128 to 512, 

and soybean performs well at most values except 1024. The 

same trend is also observed in MASE. Here the setting for 

other parameters is: SeLu, Dilations:[32], and 

Dropour_rate:0.2. 

Dilations for TCN are compared, as shown in Table 8. For 

test sets, gold has good results on all Dilations parameters, 

crude oil performs well at 16, 32, and 256, and soybean 

performs well at 8, 16, and 32. The same trend is also 

observed in MASE. Here the setting for other parameters is 

SeLu, Filters: 256, and Dropour_rate:0.2. 

Dropout_rate for TCN is compared as shown in 

Table 9. For test sets, gold has good results at 0.2 and 0.5, 

and crude oil and soybean both perform well at 0.2. The 

same trend is also observed in MASE. Here the setting for 

other parameters is SeLu, Filters: 256, and Dilations:[32]. 

All the above parameter settings are applied to the trading 

program to calculate its profitability to analyze the 

relationship between traditional error measurement (  and 

MASE) and profitability. 
TABLE 7 

COMPARING RESULTS FOR ACTIVATION FUNCTIONS OF TCN  

Activation function SeLu ReLu 

Gold 

train 0.988 0.985 

test 0.966 0.963 

MASE 0.753 0.797 

Soybean 

train 0.975 0.975 

test 0.94 0.909 

MASE 0.526 0.652 

Crude Oil 

train 0.992 0.979 

test 0.974 0.484 

MASE 0.95 4.132 

 
TABLE 8 

COMPARING RESULTS FOR PARAMETER SETS OF FILTERS OF TCN   

Filters 32 64 128 256 512 1024 

Gold 

train 0.993 0.991 0.988 0.988 0.984 0.985 

test 0.969 0.969 0.968 0.966 0.962 0.956 

MASE 0.704 0.705 0.731 0.753 0.806 0.887 

Soybean train 0.953 0.968 0.973 0.975 0.975 0.969 

test 0.924 0.919 0.925 0.94 0.924 0.878 

MASE 0.638 0.631 0.628 0.526 0.614 0.834 

Crude Oil 

train 0.988 0.988 0.991 0.992 0.992 0.987 

test 0.681 0.852 0.928 0.974 0.947 0.742 

MASE 2.426 2.132 1.597 0.95 1.467 2.933 

 
TABLE 9 

COMPARING RESULTS FOR PARAMETER SETS OF DILATIONS OF TCN  

Dilations 8 16 32 64 128 256 512 

Gold 

train 0.99 0.988 0.988 0.986 0.985 0.978 0.976 

test 0.968 0.966 0.966 0.966 0.963 0.957 0.953 

MASE 0.724 0.749 0.753 0.744 0.796 0.87 0.925 

Soybean 

train 0.976 0.974 0.975 0.966 0.96 0.954 0.94 

test 0.949 0.921 0.94 0.91 0.928 0.885 0.897 

MASE 0.48 0.595 0.526 0.721 0.612 0.846 0.771 

Crude Oil 

train 0.992 0.992 0.992 0.992 0.992 0.992 0.989 

test 0.94 0.976 0.974 0.895 0.952 0.971 0.896 

MASE 1.46 0.906 0.95 1.567 1.156 0.988 1.973 

 
TABLE 10 

COMPARING RESULTS FOR PARAMETER SETS OF DROPOUT_RATE OF TCN   

Dropout_rate 0 0.2 0.5 0.7 

Gold 

train 0.981 0.988 0.99 0.991 

test 0.958 0.966 0.967 0.946 

MASE 0.857 0.753 0.729 0.933 

Soybean 

train 0.945 0.975 0.929 0.641 

test 0.834 0.94 0.639 -0.224 

MASE 1.04 0.526 1.562 3.124 

Crude 

Oil 

train 0.986 0.992 0.991 0.987 

test 0.796 0.974 0.893 0.773 

MASE 3.065 0.95 1.492 3.247 

 

Analyzing the Profitability of Predicted Prices and Error 

Measurement 

From the previous results,  and MASE 

demonstrates the same trend on almost all parameter sets. 

Thus, for simplicity, we only use  as the error 

measurement when studying the relationship between 

profitability and traditional error measurement.     

To measure the profitability of deep learning 

models, we use two years’ out-sample data with the trading 

program in Fig. 4 for the initial capital of 100,000.0 US 

dollars to calculate the profitability of all parameter sets 

from LSTM and TCN models as shown in Tables 4 and 5.     
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The average and maximum profitability for three 

merchandize in all models and parameter sets are shown on 

the left side of Table 11.  

Comparing to LSTM, TCN provides higher 

profitability for gold.  The standard deviation for the 

profitability and the averaged maximum drawdown (MDD) 

for TCN are both lower (and better) than those from LSTM. 

The relationship between profitability and error 

measurement of the learning models of gold is provided in 

Fig. 7. The (orange-colored) circle represents LSTM, and 

the (blue) triangle is for TCN. More dots at upper right 

corners indicate their models reveal a higher positive 

correlation between profitability and error measurement 

(i.e., lower error leads to higher profits). For gold, this 

correlation coefficient is -0.55 for LSTM and 0.25 for TCN. 

Going down to specific parameter settings, When (hidden 

layers, # of neuron) =(1, 80), (2, 50), (2, 80), the LSTM 

model gets the highest profit. The highest one for TCN is 

(SeLu, 256, [1,2,4,8,16,32], 0.2).      

Soybean’s TCN models also provide higher 

profitability than LSTM’s. The standard deviation for the 

profitability from TCN is also lower than that of LSTM’s. 

The relationship between profitability and error 

measurement of corresponding models of soybean is shown 

in Fig. 8. For soybean, the correlation coefficient is -0.24 

for LSTM and 0.2 for TCN. Going down to specific 

parameter settings. When (hidden layers, # of neuron) = (2, 

80), the LSTM model gets the highest profit. The highest 

one for TCN is also (SeLu, 256, [1,2,4,8,16,32], 0.2).      

The profitability patterns of crude oil from LSTM 

models are quite unstable. TCN models of crude oil provide 

higher averaged profitability with lower standard deviation 

for better stability and lower MDD for low exposed risk. 

The relationship between profitability and error 

measurement of corresponding models of crude oil is 

shown in Fig 9. For crude oil, the correlation coefficient is -

0.82 for LSTM and 0.01 for TCN. Going down to specific 

parameter settings. When (hidden layers, # of neuron) = (2, 

3) (2,6), the LSTM model gets the highest profit. The 

highest one for TCN is also (SeLu, 256, [1,2,4,8,16,32], 

0.2).   

From these analysis, we have the following 

findings: (1) TCN models provide positive correlation 

between error measurement ( ) and profitability, (2) 

parameter sets from TCN provide much stable profitability 

than LSTM, especially the parameter set (SeLu, 256, 

[1,2,4,8,16,32], 0.2) of TCN get highest profitability in all 

three merchandise, (3) profitability fluctuates greatly in 

crude oil as well as its error measurement from both LSTM 

and TCN models. The correlation between profitability and 

error measurement for crude oil is also the most unstable 

among the three tested merchandise. 

 

 
Figure 7: Relationship of profitability and error 

measurement on gold 

 

 
Figure 8: Relationship of profitability and error 

measurement on soybean 

 

 
Figure 9: Relationship of profitability and error 

measurement on crude oil 

 

Adding Customized Loss Functions for Re-Evaluation 

and Comparison 
Granger (1999) suggested that the learning model 

and loss function determine the performance of machine 

learning. We have tested all reasonable parameter sets of 

LSTM and TCN models, and we now proceed to the 

experiments of adjusting loss function as described in 

Section III. 

After creating the loss function (with directional 

error considered) and combining it into the similar Keras 

programs as in Section III, we repeat the same experiments 

and analysis from Section IV for similar models with the 

new loss function inserted. Due to the size limit for this 

paper, results similar to Table 6 from the re-evaluations are 

omitted, but their resulting diagrams (also for test sets only) 
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are shown in Fig. 10. For test sets, the error measurement 

for crude oil degrades much further after applying the loss 

function, and those for soybean and gold improve slightly. 

Though not shown here, the training sets for three 

merchandise still all have similarly high . 

 
Figure 10: The relationship among two traditional error 

measurements, MASE and , for LSTM models with the 

customized loss function 

 

In TCN with the customized loss function, 

parameter sets for activation functions, filters, dilations, and 

dropout rates are all tested separately, and data similar to 

Tables 7 to 10 are collected. Due to space limitations, these 

detailed data are omitted with only their summary reported 

here. For activation functions, training sets for three 

merchandises are all with high . In test sets, ReLu and 

SeLu both perform reasonably for gold and soybean, and 

SeLu performs better than ReLu in crude oil. Both  and 

MASE reveal the same trend.  Here the setting for other 

parameters is: Filters: 256, Dilations:[32], and 

Dropour_rate:0.2. 

For TCN’s Filters, in test sets, gold has good 

results on all parameters, crude oil performs well around 

128 to 512, and soybean performs well in most values at 32, 

512, 1024 with little difference. The same trend is observed 

in MASE. Here the setting for other parameters is: SeLu, 

Dilations:[32], and Dropour_rate:0.2. 

For TCN’s Dilations, in test sets, gold and crude 

oil both reveal good results on all parameters, and soybean 

performs well in values from 8 to 128. The same trend is 

observed in MASE. Here the setting for other parameters is 

SeLu, Filters:256, and Dropour_rate:0.2. 

For TCN’s Dropout_rate, in test sets, gold and soybean 

both reveal good results at 0 and 0.2, and crude oil performs 

well at 0.5. The same trend is observed in MASE. Here the 

setting for other parameters is SeLu, Filters:256, and 

Dilations:[32]. 

Comparing the error measurement for TCN with 

and without customized loss function, only crude oil 

displays worse performance. Gold and soybean perform 

slightly better.  This finding is the same as what found from 

LSTM and matches the initial observation that the error 

measurement for crude oil is worst among the three 

merchandises for both LSTM and TCN.   

Comparing Profitability for Those with Loss Functions 

and All Others  

The average and maximum profitability for three 

merchandize in all models and parameter sets with the 

customized loss function are shown in the right side of 

Table 11.  

Comparing to LSTM, TCN models for gold again 

provide higher profitability with lower standard deviation 

for better stability and lower MDD for low exposed risk. 

The relationship between profitability and error 

measurement for models of gold with the customized loss 

function is provided in Fig. 11. For gold, the correlation 

coefficient is -0.28 for LSTM and 0.06 for TCN. The 

profitability does increase after the customized functions 

are added for almost all parameter sets of TCN and LSTM. 

Furthermore, most points from both LSTM and TCN 

appear at upper right corners (i.e., high profitability with 

low error measurement), which indicates the customized 

loss function performs stably for both LSTM and TCN 

models on gold.     

Similarly, TCN models for soybean provide higher 

profitability with lower standard deviation for better 

stability than those from LSTM. The relationship between 

profitability and error measurement for models of soybean 

is shown in Fig. 12. For soybean, the correlation coefficient 

is -0.003 for LSTM and -0.07 for TCN. With customized 

loss function added, the profit decreases for LSTM models 

but increases in the TCN model. Most points from TCN 

appear at upper right corners, but not the case for those of 

LSTM.  This indicates the customized loss function 

performs stably for TCN but not for LSTM on soybean. 

TCN models for crude oil also provide higher 

profitability with lower standard deviation for better 

stability than those from LSTM. The relationship between 

profitability and error measurement for models of crude oil 

is shown in Fig. 13. For crude oil, the correlation 

coefficient is -0.55 for LSTM and -0.33 for TCN. With the 

customized loss function added, the profit decreases for 

LSTM models, but increases in the TCN model. Almost all 

points from TCN appear at upper right corners, but not the 

case for those of LSTM.  This indicates the customized loss 

function performs stably for TCN but not for LSTM in 

crude oil. 

From results of all experiments in Section IV, we 

can summarize as follows: (1) TCN with customized 

functions perform best across all merchandise in terms of 

profitability and error measurement when either compared 

to the cases for LSTM or the cases for TCN without loss 

functions, (2) in LSTM, models with customized loss 

function only improve profitability on gold, but not that for 

soybean nor that for crude oil, (3) for a merchandise, if the 

error measurement for either LSTM or TCN model is low 

(gold and soybean), the profitability is usually good, and 

the loss function could improve profitability.  On the 
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contrary, if the error measurement for either LSTM or TCN 

model is high (crude oil), the profitability usually fluctuate 

considerably, and the loss function cannot help, (4) the 

relationship between profitability and error measurement 

for models of LSTM and TCN with or without customized 

loss function is not, as commonly believed, highly 

positively correlated (i.e., the more precise the predicted 

value, the more trading profit) since the correlation 

coefficients are rarely higher than 0.5 in all our 

experiments, and (5) the customized loss functions perform 

better in TCN than in LSTM. 

 

 
Figure 11: Profitability and error measurement for models 

with customized loss function from gold 

 

 
Figure 12: Profitability and error measurement for models 

with customized loss function from soybean 

 

 
Figure 13: Profitability and error measurement for models 

with customized loss function from crude oil 

 
 
 

TABLE 11 
PERFORMANCE SUMMARY OF ALL MODELS FOR THREE MERCHANDISES   

  LSTM TCN 

LSTM＋
customized 

loss fn. 

TCN+ 
customized 

loss fn. 

Gold 

Max. profit 15535 20990 18412 21308 

 

Avg. profit 
10749 15672 13714 15876 

 
Standard 

dev. 

5550 3835 5989 2422 

Avg. MDD 12217 10540 10343 9475 

Soybean 

Max. profit 11925 13775 9900 15763 

 

Avg. profit 
8485 10255 6039 10948 

 

Standard 

dev. 

3578 2854 2959 3867 

Avg. MDD 5561 6446 5609 5668 

Crude 

Oil 

Max. profit 34897 20896 12308 27149 
 

Avg. profit 
15596 17195 7109 18781 

 

Standard 

dev. 

10568 6410 3903 5025 

Avg. MDD 21435 12716 8572 13124 

 

V.  CONCLUSION 
 

 In this work, a new validation approach is 

proposed for evaluating the quality of deep learning models 

when applied to merchandise price data (as time series). 

The proposed approach explores the relationships between 

profitability and error measurements of deep learning 

models. The profitability of learning models is measured by 

techniques from program trading with a trading program 

matching the deep learning prediction model (a next-day 

exit trading program in this paper). Besides, a new 

(customized) loss function considering both magnitude-

based and direction-based error is introduced to improve the 

trading profitability of deep learning models.  

A three-stage process of validation, as proposed in 

Section III, is conducted on three commonly traded 

merchandise in this paper, with all experiment results 

displayed and analyzed in Section IV.  Our findings can be 

summarized as follows: (1) TCN with customized functions 

perform best across all merchandise in terms of profitability 

and error measurement when either compared to the cases 

for LSTM or the cases of TCN without loss functions, (2) in 

LSTM, models with customized loss function only 

improves profitability on gold, but not that for soybean nor 

that for crude oil, (3) for a merchandise, if the error 

measurement for either LSTM or TCN model is low (gold 

and soybean), the profitability is usually excellent and 

stable, and the proposed loss function could improve 

profitability.  On the contrary, if the error measurement for 

either LSTM or TCN model is high (crude oil), the 

profitability usually fluctuate considerably, and the loss 

function cannot help, (4) the relationship between 
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profitability and error measurement for models of LSTM 

and TCN with or without customized loss function is not, as 

commonly believed, highly positively correlated (i.e., the 

more precise the predicted value, the more trading profit) 

since the correlation coefficients are rarely higher than 0.5 

in all our experiments, and (5) the customized loss 

functions perform better in TCN than in LSTM.  
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