
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 6 (December 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.6.6

 39 This work is licensed under Creative Commons Attribution 4.0 International License.

Autonomous Vehicle and Augmented Reality Usage

Dr. Yusuf UZUN
1
 and Mehmet BİLBAN

2

1
Assistant Professor, Department of Computer Engineering, Necmettin Erbakan University, TURKEY

2
Lecturer, Department of Computer Technologies, Necmettin Erbakan University, TURKEY

1
Corresponding Author: yuzun@erbakan.edu.tr

ABSTRACT
With the development of autonomous development

technology, the need for additional applications to be used

inside and outside the vehicle is increasing. As a result of the

literature review, many applications have been developed to

display vehicle data directly on the monitor, with reflections

on glass, and on hardware devices. These applications have

been developed only for a defined problem and for a

particular autonomous system. In this study, a basic

autonomous vehicle software infrastructure and mobile

Augmented Reality application that can work on Android

devices have been developed. The Mobile Augmented Reality

app serves inside and outside the vehicle. In addition, this

application has been shown to support multiple autonomous

system infrastructures.

Keywords— Augmented Reality, Deep Learning, Mobile

Application, Autonomous Vehicle

I. INTRODUCTION

Autonomous systems are defined as self-

navigating vehicles capable of detecting the outside world

using data from sensors. Autonomous systems include

industrial robots, UAVs, driverless automobiles,

unmanned underwater vehicles, unmanned agricultural

vehicles, unmanned aerial-space vehicles. As the

automobile industry has more consumer markets than other

areas, there has been a further increase in the

developments in the automotive sector. Autonomous

vehicle technology has progressed rapidly over the last

decade as a result of competition in artificial intelligence

technology and automotive technologies [1].

Augmented Reality (AR) technology goes back to

the 1960s. The first system infrastructure was developed

for both AR and Virtual Reality (VR). It is known that the

idea of how two-dimensional objects can be displayed in

three dimensions to the user in the real world is tried with

a limited number of computers [2].

AR is a technology used by many public or

private companies before developing autonomous systems.

This technology is used as a compass to guide many areas,

such as designed algorithms, system integration,

communication protocols, and display mode.

Autonomous vehicles will become the

indispensable technology of personal transportation in the

near future. Based on the question of how the human eye

perceives the real world, autonomous vehicle developers

sought ways to show how an autonomous vehicle

perceives the outside world, and decided that AR is one of

the technologies that can be used [3]. With this technology,

it is aimed to combine and display data from sensors and

cameras with real world objects. AR technology is a

technology that can easily show all complex situations

about speed, energy, road conditions and vehicle.

The fact that autonomous vehicles have attracted

great interest and the studies carried out by many state and

private institutions in this field has played a major role in

making autonomy the main subject in this study. In this

study, for an autonomous tool, the basic software

architecture was developed and the AR application was

built on it.

In this study, the developed AR application has

the infrastructure that can be used in the following

autonomous systems.

I. Self-Driving Vehicles

II. Unmanned Aerial Vehicles

III. Unmanned Aerial – Spacecraft

IV. Unmanned Submarine Vehicles

V. Unmanned Agricultural Vehicles

VI. Thermal and Nuclear Power Plants

VII. Internet of Things Applications

An autonomous software architecture has been

developed using MIT-RACECAR, which MIT offers

developers as open source. All the software and hardware

infrastructure we have developed is designed to work on

this tool.

Mobile Augmented Reality application is an

Android based mobile application. This mobile application

is designed to work on all Android devices.

For Server-Client Architecture, software running

on the server has been developed. This software sends the

data it receives from the autonomous vehicle to the mobile

device. It also processes the data received from the

peripherals of the autonomous vehicle and shares it with

the mobile AR.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 6 (December 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.6.6

 40 This work is licensed under Creative Commons Attribution 4.0 International License.

II. METHODOLOGY

MIT-RACECAR is an open source 1/10 scale

autonomous vehicle platform for robotics research and

education. This platform has sensors and computer

hardware installed on the Traxxas RC chassis. The design

and development of RACECAR was done by the Lincoln

Laboratory's BeaverWorks Initiative, the Department of

Aeronautics and Space Science, and the Information and

Decision Systems Laboratory at the Massachusetts

Institute of Technology [4]. RACECAR and its hardware

components are shown in Figure 1 [5].

Figure 1: MIT RACECAR

2.1 Converting RACECAR to an Autonomous Vehicle
Since a vehicle cannot perform humanoid driving

actions on its own, systems in which hardware and

software work together are used. The need analysis was

based on the question of how to make human driving

actions in a real world a robot. To enable autonomous

movement of a vehicle, different software and hardware

systems must be integrated. All components are shown in

Figure 2.

Figure 2: Autonomous Vehicle Components

2.2 ROS Architecture and Concepts

ROS is a framework for writing robot software. It

is used in many projects for research and commercial

purposes. Today, robotics application developers can

develop robot software with ROS quickly and flexibly [6].

Especially if more than one application wants to

communicate with each other, ie to send data, it will

benefit from the framework provided by ROS. When

sending and receiving data, it is more convenient to use

ROS instead of socket programming [7]. In order to create

nodes on ROS, we also need ROS client libraries to

broadcast services and messages.

ROS client libraries consist of code collections

with functions to implement ROS concepts. In this study,

the rospy client library developed for ROS was used.

The Rospy client library allows Python

programmers to quickly interface with ROS Threads,

Services, and Parameters. Rospy's design supports

application speed (ie developer time) based on runtime

performance. Thus, algorithms can be quickly prototyped

and tested [8].

2.3 Data Collection

 In order to move the vehicle without a driver, data

must be collected on the road to be driven. Data were

collected in the northern part of Necmettin Erbakan

University Seydisehir Ahmet Cengiz Engineering Faculty

1st Floor. To collect data, a code was developed with the

Python programming language. This developed code takes

speed, angle and 30 visual / sec data from the vehicle

driving in the corridor and writes to the file. The area

where the data is collected has a large exterior window,

lights at different angles, and reflections from tiles on a

bright floor. All the collected data is used as a database for

end-to-end learning in later stages.
2.4 Deep Learning Network Structure

 While Machine Learning techniques give good

results in grouping or clustering variables, accuracy

decreases as data size increases. Therefore, Deep Learning

is one of the most important developments in the field of

artificial intelligence. Deep learning is a field of study that

involves machine learning algorithms such as artificial

neural networks and the like, trying to model abstraction in

data. In other words, Deep Learning algorithms are an

ANN set that can better represent large-scale data sets.

 In this study, the end-to-end learning model

developed by NVIDIA for autonomous vehicles is used

[9]. The CNN structure is shown in Figure 3 [10]. This

network consists of the Keras Lambda function for image

normalization, three 5x5 convolution layers, two 3x3

convolution layers, and fully connected layers. This model

also includes conversion from RGB to YUV color space,

2x2 shifting on a 5x5 convolution layer.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 6 (December 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.6.6

 41 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 3: NVIDIA Convolutional Neural Network [13]

CNNs have made a radical change in image

recognition [11], [12]. Prior to the widespread adoption of

CNNs, most image recognition operations were performed

by manual feature extraction followed by a classifier.

Together with the invention of CNNs, the features are

automatically learned from training examples. The CNN

approach is particularly powerful in image recognition

tasks because convolution captures the 2D nature of

images [9].

2.5 Augmented Reality Tracking and Tracking System

Architecture
 In 1997, Azuma defined AR as a system that

fulfills 3 basic criteria [14]:

I. Real and virtual combination,

II. Real-time interaction,

III. System where 3D real and virtual objects are

 together

Today, AR is defined as the technology that allows the

virtual images created in computer environment to be

placed and used in the real world. According to the actions

of the users, the positioning of the graphical objects

according to the most appropriate place is very important

for AR applications. Today, AR applications can be

divided into two groups according to their usage areas: 1)

Marker-based technology, 2) Markesless.

Marker-Based AR System: Marker-based tracking is

achieved by physically adding markers to the object to be

monitored. The markers must have a suitable design

according to the area to be used. Pointers placed on real

objects have already been introduced to the system. The

position of markers on real objects must be determined in

advance for quick and easy detection.

Markerless AR System: The Markerless method is a

method that performs object recognition without the need

for additional placement or pointers on the media. This

method performs object recognition by inference from

models created by computer-aided design (CAD) or from a

set of points representing an existing 3D object [15].

Markerless recognition ensures minimum process

readiness for users. Markerless object recognition requires

more complex operations than marker object recognition.

This method has not proved to be better than a marker-

based method [16].

2.6 Object Recognition with Android Neural Networks

and Tensor Flow Lite
Android Artificial Neural Networks Application

Programming Interface (UPA) is an Android C UPA

designed to perform compute-intensive operations for

machine learning on mobile devices. UPA is available on

all devices with Android 8.1 (UPA Level 27) or higher.

Android Artificial Neural Networks support the ability to

extract from previously trained and built-in models with

UPA.

The runtime of Android neural networks is

determined by optimally allocating the available workload

based on hardware features and application requirements

on the device, graphics processing units (GPUs), and

signal processors. Figure 4 shows the architecture of the

Android neural networks [17].

Figure 4: Android Artificial Neural Networks Application

Programming Interface [17]

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 6 (December 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.6.6

 42 This work is licensed under Creative Commons Attribution 4.0 International License.

 Smartphones can take advantage of inference

operations on the device for machine learning tasks. In

general, it is common for mobile devices to use machine

learning models in the cloud. TensorFlow Lite enables

extraction in the mobile device. TensorFlow Lite supports

Android and iOS platforms. Figure 5 illustrates the mobile

platforms that TensorFlow Lite supports. The first step

involves converting a trained TensorFlow model to the

TensorFlow Lite file format (.tflite) using the TensorFlow

Lite converter. The converted model file is used in the

application [18].

Figure 5: TensorFlow Lite architecture [19]

In this study, TensorFlow Lite was added to the

Android application. At the same time, the previously

trained COCO SSD MobileNet V1 model was

incorporated into the autonomous Android mobile AG

application. At the same time with this provided model, 10

objects can be recognized and located in an image. This

model is trained to recognize 80 object classes [20].

2.6 Developing a Mobile AR Application for an

Autonomous Vehicle
 We can control how an autonomous vehicle

perceives the outside world remotely or through in-vehicle

applications. Traditional mobile applications often operate

in a server-client architecture to provide an interactive

service. Mobile AR application developed in the study,

instant vehicle speed value change, simultaneous energy

consumption and real-time steering angle change on the

screen to show the data must be taken from the vehicle.

Data acquisition through the vehicle is provided by a

developed server. Figure 6 represents the communication

architecture between a server and mobile AR developed on

RACECAR.

Figure 6: RACECAR Server – Mobile AR

 RESTful data communication architecture is used

between server and client. REST is expressed as

representative state transfer. Using the HTTP protocol,

GET and POST requests, such as requests to respond to

these requests in various formats is a flexible way of

communication.

IV. RESEARCH RESULTS

Mean square error (MSE) loss function was used as

the performance evaluation criterion during the training

phase of the autonomous vehicle. Figure 7 shows how the

values of the MSE loss function change as the number of

steps (epochs) for training and validation data sets

increases. The loss of MSE decreased rapidly after the 1st

epoch and was decreased by 5-8. epoch remains constant

between. 8-9. The epochs show a change but the error rate

is neglected as a result of the test operations.

Figure 7: MSE loss function graph

Figure 8 shows one of the objects recognized by

real-time mobile AR.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 6 (December 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.6.6

 43 This work is licensed under Creative Commons Attribution 4.0 International License.

Figure 8: Identifying the Stop Sign

V. CONCLUSION

 The Mobile AR application was designed and

developed for use on devices with Android operating

systems. This application has a substructure for internal

and external use. In the same way, it is shown how the

outside world is perceived with AR technology to make

the passengers traveling in the vehicle feel safer. The

energy, speed and steering changes of a vehicle performing

autonomous driving were monitored remotely by mobile

AR without driver and traveling passenger.

This infrastructure, which we have developed, is

intended to be useful in multiple autonomous systems, to

be modular, to be mobile and to contribute to the literature

by shedding light on some future problems.

As a result of the tests, the vehicle needs

continuous high battery values and unstable behaviors at

low voltage values (for 12.6V and below values) were

observed. In order not to put an extra burden on the

vehicle's power consumption, the electricity requirement of

the mobile device on which the mobile AR application

operates was not taken over the vehicle and was provided

from the mobile device's own battery.

REFERENCES

[1] V. Rastogi. (2017). Virtual reality based simulation

testbed for evaluation of autonomous vehicle behavior

algorithms. A Thesis Presented to the Graduate School of

Clemson University in Partial Fulfillment of the

Requirements for the Degree Master of Science Computer

Science. Clemson University.

[2] I. E.Sutherland. (1968). A head-mounted three

dimensional display. In Proceedings of the AFIPS Fall Joint

Computer Conferance, pp. 757–764.

[3] J. Fredriksson, B. Kulcsar, & J. Sjöberg. (2015).

Proceedings of the 3rd international symposium on future

active safety technology towards zero traffic accidents.

Available at:

http://publications.lib.chalmers.se/records/fulltext/222422/loc

al_222422.pdf.

[4] MIT Racecar. (2017). MIT racecar mobile platform.

Available: http://racecar.mit.edu.

[5] Openzeka. (2019). Openzeka online. Available at:

https://openzeka.com/.

[6] ROS. (2019). Robot operating system. Available at:

http://www.ros.org/.

[7] L. Joseph. (2018). Robot operating system for absolute

beginners_ robotics programming made easy-apress.

Available at:

https://www.apress.com/gp/book/9781484234044.

[8] http://wiki.ros.org/rospy.

[9] M. Bojarski et al. (2016). End to end learning for self-

driving cars. Available at:

https://images.nvidia.com/content/tegra/automotive/images/20

16/solutions/pdf/end-to-end-dl-using-px.pdf.

[10] Y. LeCun et al. (1989). Backpropagation applied to

handwritten zip code recognition. Neural Computer, pp. 541–

551.

[11] A. Krizhevsky, I. Sutskever, & G. E. Hinton. (2015).

ImageNet classification with deep convolutional neural

networks. Journal of Geotechnology and Geoenvironmental

Engineering, 12, 04015009.

[12] K. Z. and D. D. T. Mariusz Bojarski, Ben Firner, Beat

Flepp, Larry Jackel, & Urs Muller. (2016). End-to-end deep

learning for self-driving cars. Available at:

https://devblogs.nvidia.com/deep-learning-self-driving-cars/.

[13] R. T.Azuma, (1997). Survey of augmented reality.

Available at:

https://www.cs.unc.edu/~azuma/ARpresence.pdf.

[14] J. Paulo Lima et al. (2017). Markerless tracking system

for augmented reality in the automotive industry. Expert

Systems with Applications, 82, 100–114.

[15] P. Khandelwal, P. Swarnalatha, N. Bisht, & S. Prabu.

(2015). Detection of features to track objects and

segmentation using grabcut for application in marker-less

augmented reality. Procedia Computer Science, 58, 698–705.

[16] Android Developers. (2019). Android neural networks

API. Available at:

https://developer.android.com/ndk/guides/neuralnetworks.

[17] Arun Mani Sam. (2019). Developing SSD-Object

detection models for android using tensorflow. Available at:

https://www.inspirisys.com/objectdetection_in_tensorflowde

mo.pdf.

[18] L. Moroney. (2018). Using tensorflow lite on android.

Available at:

https://miro.medium.com/max/1573/0*Bt9qwKDjd1xi5RDd.

[19] TensorFlow. (2019). TensorFlow lite object detection.

Available at:

https://www.tensorflow.org/lite/models/object_detection/over

view.

