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ABSTRACT 
FP-growth algorithm is a classic algorithm of mining 

frequent item sets, but there exist certain disadvantages for 

mining the weighted frequent item sets. Based on the weighted 

downward closure property of the weighted model, this paper 

proposed a method to reduce the use of storage space by 

constructing a weight ordered FP-tree, so as to improve the 

generation efficiency of weighted frequent item sets. 
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I.  INTRODUCTION 
 

Association rule mining occupies a very important 

position in data mining, the purpose of which is to find out 

the part that people are interested in from the massive data, 

so as to make better use of the useful information extracted. 

The Apriori algorithm
[1]

 was proposed by Agrawal et al. in 

1994, but it needs to scan the database multiple times and 

generate a large number of candidate sets. Therefore, in 

2000, Han et al. proposed the FP-growth algorithm
[2]

 based 

on FP-tree data structure for the deficiencies of the Apriori 

algorithm. The algorithm only needs to scan the database 

twice to avoid generating a large number of candidate sets. 

In the process of mining association rules, fp-

growth algorithm spends most of its time on the construction 

and traversal of fp-tree and conditional fp-tree. Therefore, if 

we can improve the efficiency in this aspect, the overall 

efficiency of the algorithm will be greatly improved. Based 

on the analysis in this aspect, an optimization is proposed for 

the algorithm itself, namely replacing traditional fp-tree with 

ordered fp-tree, so that every node and child nodes in the 

tree are arranged from small to large according to the 

sequence number of items, reducing the construction time of 

the tree. 

Classical algorithms default to transactions of equal 

importance, but in real life the importance of each 

transaction is different and unevenly distributed. To solve 

this problem, weighted association rules mining algorithm 

emerged. In this paper, fp-growth algorithm is studied by 

using the weighted model based on fp-tree
[3]

 proposed by 

Chen wen in 2012. On the basis of the weighted model, a 

new algorithm for frequent pattern mining of ordered fp-tree 

is proposed by using the method of constructing ordered fp-

tree. 

 

II.  ORDERED FP-TREE 
 

Fp-growth algorithm recursively mines frequent 

pattern trees by storing frequent pattern information in 

frequent pattern trees, obtaining frequent pattern sets, and 

then obtaining association rules. The algorithm is mainly 

divided into two steps :(1) fp-tree construction; (2) mining 

based on fp-tree. This paper mines association rules by 

constructing ordered fp-tree. 

Each node of the ordered fp-tree consists of four 

domains, namely, the node serial number item-id, the 

number of paths to node nodes count, the joint pointer 

domain pc-link of parent node pointer and child node pointer, 

and the joint pointer domain node-link of sibling node 

pointer and node pointer of the same name. Among them, 

the item - id instead of the node name, serial number 

according to the frequent items support after descending 

order, records relating to the node represents in the serial 

number in the table. The reason why the joint pointer field is 

adopted is that the pointer of the child node and the sibling 

node are only used in tree construction, while the pointer of 

the parent node and the pointer of the same name are only 

used in mining. Therefore, when establishing an ordered fp-

tree, pc-link points to the pointer of child node and node-link 

points to the pointer of brother node. When mining frequent 

patterns, pc-link points to the parent node pointer and node-

link points to the node pointer of the same name. This 

improves the space utilization rate. The children of the same 

parent node are sorted from small to large according to the 

size of item-id, thus constructing an ordered fp-tree. 

The difference between traditional fp-tree and 

ordered fp-tree is as follows :(1) the node in traditional fp-

tree saves the node name item-name, while the node in 

ordered fp-tree saves the node serial number item-id, and 

changes the node serial number into the node name at the 

last output. (2) nodes in traditional fp-tree are arranged out 

of order, while nodes in ordered fp-tree are arranged in 

ascending order of item-id. 

The following is the construction algorithm of 
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ordered fp-tree: 

Input: a transaction database D with minsup minimum 

support. 

Output: ordered fp-tree 

The transaction database D is scanned to obtain the 

support count of frequent items, and the frequent item set is 

obtained. The frequent items are arranged in descending 

order according to the support count, which is denoted as L. 

Create a root node root "null" for ordered fp-tree, 

each transaction in the transaction database T perform the 

following operations: delete the transaction does not meet 

the minimum support, the frequent items in descending order 

support count, with a serial number in the L item - id instead 

of every frequent items, the serial number to start from 0 

ascending, remember after sorting sequence for [p | p], p for 

the first element in the sequence, p for other elements. Then 

call the insert_tree(p| p,root) method. 

The implementation method of ert_tree(p| p,root) is 

as follows: if root does not have child nodes, remember the 

inserted node is node, then node.item-id=p, node.count=1, 

and the parent pointer node points to root. Otherwise, find 

the insertion location of p in the child node of root. If the 

same node node as p is found, the value of node.count will 

be increased by 1. If the same node is not found, create a 

new node node, set the values of its various fields, and insert 

the node before the next node of p. If P is not null, 

insert_tree(P |P,root) is recursively called. 

The following is the transaction database based on 

table I and the ordered fp-tree constructed by the above 

ordered fp-tree construction algorithm, as shown in Figure 1. 
TABLE I 

THE TRANSACTION DATABASE 

Transaction Transaction set Ordered transaction set 

T1 A,C,G A,G,C 

T2 A,B,E,F A,E,F 

T3 E,I E 
T4 A,D,E,G A,E,G,D 

T5 A,C,E,G A,E,G,C 

T6 A,F,D A,D,F 

 

 
Figure 1: Ordered fp-tree and item entry table 

 

After the construction of the ordered fp-tree, the 

values of the two joint pointer fields need to be changed so 

that pc-link points to the parent node and node-link points to 

the node with the same name, i.e. the next node of the same 

item. 

 

III.  WEIGHTED MODEL 
 

The project set I = { i1, i2, ..., ik} is a set of k 

different items. The transaction database D={T1, T2,..., Tn}, 

where every transaction Ti(i = 1 , 2, ..., n) contains a unique 

transaction identifier TID and a subset of I. 

Definition 1 Let each item ij(j=1,2,...,k) in item set 

I={i1,i2,...,ik} have a weight W(j), 0<=W(j)<=1. The project 

item set X also has a corresponding weight, which is 

recorded as 
||/)()( XjWXWI

Xij






. The weight of the 

transaction t in the transaction database D is denoted by 

||/)( tWijtWT
tij






. The weighted support for association rule 

BA  is denoted as 

))(/)(()sup(
,





TtTBATt

tWTtWTBAW



. 

Definition 2 Let the minimum weighted support be 

minsupW . If the item set X is a frequent item set, the 

weighted support is not less than the minimum weighted 

support, i.e. 
minsup)sup( WXW 

. 

Theorem 1 If item sets X and Y are respectively a 

subset of I, i.e. IX  , IY   and YX  , then 

)sup()sup( YWXW  . 

Proof: Let the transaction data set containing X, Y 

be Tx, Ty, because YX  , for 
yt T

, there must be 

Txt , so 





tYTttXTt

tWTtWT
,,

)()(

, 

)sup()sup( YWXW   can be obtained. 

Theorem 2 (weighted downward closure property) 

When IX  , IY  , YX   and X and Y have the same 

prefix, if X is not frequent, Y must be infrequent. 

Proof: From theorem 1, we know that 

)sup()sup( YWXW  . If X is not frequent, we can know 

supmin)sup( WXW   by definition 2. So 

supmin)sup( WYW  , i.e. Y is not frequent. 

The weighted model proposed here satisfies the 

weighted downward closure property, ensuring that the 

subset of frequent item sets is also frequent, and the parent-

set of infrequent item sets is also infrequent, so that frequent 

item sets can be merged and infrequent item sets can be 

pruned. Applying the weighted model to the weighted 

association mining algorithm, we can optimize the algorithm 

process to mine the weighted frequent item sets. 

 



International Journal of Engineering and Management Research                e-ISSN: 2250-0758  |  p-ISSN: 2394-6962 

                        Volume- 9, Issue- 5 (October 2019) 

www.ijemr.net                                                                                                      https://doi.org/10.31033/ijemr.9.5.22  

 

  156 This work is licensed under Creative Commons Attribution 4.0 International License. 

 

IV.  IMPLEMENT OF WEIGHTED 

ORDERED FP-TREE ALGORITHM 
 

 Taking table I transaction database as an example, 

the weighted ordered fp-tree frequent pattern mining 

algorithm includes the following four steps: 

Step 1: scan the database and sort the project in descending 

order of support. 

Scanning the transaction database of Table I, we get 

the project set I = { A, B, C, D, E, F, G, I} . We arrange the 

items in the project set in descending order of support. When 

the two projects have the same support, they are arranged in 

alphabetical order. This arrangement ensures that the sorting 

results are consistent each time. The ordering of the items 

and their weights are shown in Table II. 
TABLE II 

PROJECT NAME AND ITS WEIGHT 

Project name Weight 

A 3 

E 4 
G 2 

C 3 

D 4 

F 5 

B 1 

I 1 

 

Step 2: scan the database to normalize the transaction 

weight. 

Scanning transaction database calculates the weight 

of each transaction, i.e. 

||/)( tWijtWT
tij






, for 

example, t1 = { A, C, G} , WT(t1) = ( 3 + 3 + 2 ) / 3 = 2.67. 

For the same reason, the weight of each transaction is shown 

in the third column of Table 3.In order to solve the problem 

that the weight is greater than 1, the transaction weight is 

normalized, which is also beneficial to the improvement of 

the algorithm efficiency. The sum of the transaction weights 

is 




T

WTTW
t

)t()(

, and the transaction weights are 

normalized to calculate the weight ratio of each transaction, 

for example, t1 = { A, C, G} , WT(t1) = 2.67, W(T ) = 18.67, 

WT(t1) / W(T) = 0.1430. Similarly, the normalized 

transaction weights are shown in the fourth column of Table 

III. Also, WT(t1) / W(T) + WT(t2) / W(T) + ... + WT(ti) / 

W(T) = 1. 
TABLE III 

TRANSACTION WEIGHT TABLE 

Transaction Item set 
Transaction 

weight 

the 

normalized 

transaction 
weight 

T1 A,C,G 2.67 0.1430 

T2 A,B,E,F 3.25 0.1741 

T3 E,I 2.50 0.1339 

T4 A,D,E,G 3.25 0.1741 
T5 A,C,E,G 3.00 0.1607 

T6 A,F,D 4.00 0.2142 

The sum of the 

transaction 

weights 

 18.67 1.0000 

 

Step 3: construct the weighted ordered fp-tree. 

Weighted ordered fp-tree is defined as follows: 

(1) The structure of weighted ordered fp-tree 

is similar to that of the above ordered fp-tree. Each node is 

still composed of four domains, with the difference that the 

count recording the path number of node arrival points is 

changed to the sum of the normalized weights of the 

transaction set to which the node belongs. The four domains 

are respectively the node serial number item-id, the sum 

count of the normalized weight of the transaction set to 

which the node belongs, the pc-link joint pointer domain of 

the parent node pointer and child node pointer, and the node-

link joint pointer domain of the sibling node pointer and the 

node pointer of the same name. 

(2) The structure of item header table is node-

id, node-link and weight. Where, node-id is the item 

sequence number of the item header table; Node-link points 

to the first node with the same value as the node-id field. 

Weight records the sum of the normalized weights of the 

transaction set to which the item belongs. For example, the 

node id = '2', 'G', WI (' G ') = 0.1430 + 0.1741 + 0.1607 = 

0.4778. 

The following is a weighted FP-tree construction 

algorithm: 

Input: transaction database D, minimum weighted support 

Wminsup 

Output: Weighted FP-tree 

Scan the transaction database, calculate the 

weighted support of each item, and establish the item header 

table in descending order of weighted support. 

We create a root node ( i.e. root) with the initial 

value set to "Null" . For each transaction T in the transaction 

database, the following operations are performed: deleting 

items that do not satisfy the minimum weighted support 

degree, frequent items are sorted in descending order of 

support degree, and the sorted transaction T is [ i, I] , where i 

is the first element of the transaction and I is a collection of 

remaining elements. Recursively call updataFPtree( [ i, I] , 

root) . The method is performed as follows: First, look up i 

in the child node of root. If the same node as i is found, the 

count field of the Node records the weight of the normalized 

transaction set of the Node; If the same node as i is not 

found, we create a new node and set its count field value to 

the normalized weight of the transaction set of Node. The 

new node is linked to its parent node root, and is linked to 

the same node through the node chain structure. If I is not 

empty, recursively call updataFPtree( [ i, I] , root) . 

Let Wminsup = 0.2, the constructed weighted 
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ordered fp-tree is shown in Figure 2. 

 
Figure 2: Weighted ordered fp-tree 

 

Step 4: mining weighted ordered fp-tree. 

According to theorem 2, the item set with the same 

prefix has weighted downward closure property, so we start 

from the second item of the head table to generate the 

condition pattern base of each item, and construct the 

weighted condition FP-tree according to the condition 

pattern base. Table IV shows the corresponding weighted 

condition FP-tree and frequent mode. 
 

TABLE IV 

WEIGHTED CONDITION FP-TREE AND FREQUENT MODE 

Project 
name 

Weighted condition 
FP-tree 

frequent mode 

E <A:0.8661> {A,E:0.8661} 

G <A:0.5197,E:0.3214> 
{A,G:0.5197},{E,G:0.3214}, 

{A,E,C:0.3214} 

D <A:0.3464> {A,D:0.3464} 
F <A:0.3464> {A,F:0.3464} 

C <A:0.3464> {A,C:0.3464} 

 

V.  ALGORITHM ANALYSIS AND 

EXPERIMENTAL RESULTS 
 

By normalizing transaction weights, the weighted 

model used in the proposed algorithm is more efficient than 

the traditional weighted model, and the weighted downward 

closure of the weighted model saves some mining time, thus 

improving the efficiency of the algorithm. By using the 

ordered fp-tree data structure to store data, candidate item 

sets need not be generated repeatedly, which reduces The 

Times of scanning the database and saves the I/O overhead. 

In addition, the process of discovering long frequent item 

sets is transformed into recursively discovering some short 

frequent item sets and then concatenating suffixes, thereby 

reducing the search overhead. 

Experimental performance comparison was made 

between the weighted ordered fp-tree algorithm and the 

weighted fp-tree algorithm (the weighted ordered fp-tree 

algorithm is denoted as WOFP algorithm, and the weighted 

fp-tree algorithm is denoted as WFP algorithm), and the 

experimental results were shown in Figure 3. The 

experimental environment: Windows10 operating system, 

8GB of memory, and Pycharm2018 development 

environment. The transaction set is generated by python 

code for 100,000 transactions, each with a maximum length 

of 10. 

 

 
Figure 3: Experimental result 

 

In the experiment, with the minimum weighted 

support increasing from 0.1 to 0.7, the execution time of the 

two algorithms gradually decreased. With the same 

minimum weighted support, the improved WOFP algorithm 

performs faster than the WFP algorithm. 

 

VI.  CONCLUSION 
 

This paper improves the weighted fp-tree algorithm 

and replaces the traditional fp-tree with ordered fp-tree, 

which makes full use of the structure space of the tree and 

saves the time of mining fp-tree. In addition, weight is added 

to the data to make the data more convincing. Compared 

with the weighted fp-tree algorithm, the improved algorithm 

has better performance. 
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