
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 5 (October 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.5.22

 154 This work is licensed under Creative Commons Attribution 4.0 International License.

Mining Algorithm for Weighted FP-Growth Frequent Item Sets based on

Ordered FP-Tree

Yuanyuan Li
1
 and Shaohong Yin

2

1
Master, School of Computer Science and Technology, Tianjin Polytechnic University, CHINA

2
Associate professor, School of Computer Science and Technology, Tianjin Polytechnic University, CHINA

2
Corresponding Author: 13834814101@163.com

ABSTRACT
FP-growth algorithm is a classic algorithm of mining

frequent item sets, but there exist certain disadvantages for

mining the weighted frequent item sets. Based on the weighted

downward closure property of the weighted model, this paper

proposed a method to reduce the use of storage space by

constructing a weight ordered FP-tree, so as to improve the

generation efficiency of weighted frequent item sets.

Keywords— Data Mining, Association Rules, Ordered FP-

Tree, Weighted Model, Weighted Ordered FP-Tree

I. INTRODUCTION

Association rule mining occupies a very important

position in data mining, the purpose of which is to find out

the part that people are interested in from the massive data,

so as to make better use of the useful information extracted.

The Apriori algorithm
[1]

 was proposed by Agrawal et al. in

1994, but it needs to scan the database multiple times and

generate a large number of candidate sets. Therefore, in

2000, Han et al. proposed the FP-growth algorithm
[2]

 based

on FP-tree data structure for the deficiencies of the Apriori

algorithm. The algorithm only needs to scan the database

twice to avoid generating a large number of candidate sets.

In the process of mining association rules, fp-

growth algorithm spends most of its time on the construction

and traversal of fp-tree and conditional fp-tree. Therefore, if

we can improve the efficiency in this aspect, the overall

efficiency of the algorithm will be greatly improved. Based

on the analysis in this aspect, an optimization is proposed for

the algorithm itself, namely replacing traditional fp-tree with

ordered fp-tree, so that every node and child nodes in the

tree are arranged from small to large according to the

sequence number of items, reducing the construction time of

the tree.

Classical algorithms default to transactions of equal

importance, but in real life the importance of each

transaction is different and unevenly distributed. To solve

this problem, weighted association rules mining algorithm

emerged. In this paper, fp-growth algorithm is studied by

using the weighted model based on fp-tree
[3]

 proposed by

Chen wen in 2012. On the basis of the weighted model, a

new algorithm for frequent pattern mining of ordered fp-tree

is proposed by using the method of constructing ordered fp-

tree.

II. ORDERED FP-TREE

Fp-growth algorithm recursively mines frequent

pattern trees by storing frequent pattern information in

frequent pattern trees, obtaining frequent pattern sets, and

then obtaining association rules. The algorithm is mainly

divided into two steps :(1) fp-tree construction; (2) mining

based on fp-tree. This paper mines association rules by

constructing ordered fp-tree.

Each node of the ordered fp-tree consists of four

domains, namely, the node serial number item-id, the

number of paths to node nodes count, the joint pointer

domain pc-link of parent node pointer and child node pointer,

and the joint pointer domain node-link of sibling node

pointer and node pointer of the same name. Among them,

the item - id instead of the node name, serial number

according to the frequent items support after descending

order, records relating to the node represents in the serial

number in the table. The reason why the joint pointer field is

adopted is that the pointer of the child node and the sibling

node are only used in tree construction, while the pointer of

the parent node and the pointer of the same name are only

used in mining. Therefore, when establishing an ordered fp-

tree, pc-link points to the pointer of child node and node-link

points to the pointer of brother node. When mining frequent

patterns, pc-link points to the parent node pointer and node-

link points to the node pointer of the same name. This

improves the space utilization rate. The children of the same

parent node are sorted from small to large according to the

size of item-id, thus constructing an ordered fp-tree.

The difference between traditional fp-tree and

ordered fp-tree is as follows :(1) the node in traditional fp-

tree saves the node name item-name, while the node in

ordered fp-tree saves the node serial number item-id, and

changes the node serial number into the node name at the

last output. (2) nodes in traditional fp-tree are arranged out

of order, while nodes in ordered fp-tree are arranged in

ascending order of item-id.

The following is the construction algorithm of

mailto:13834814101@163.com

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 5 (October 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.5.22

 155 This work is licensed under Creative Commons Attribution 4.0 International License.

ordered fp-tree:

Input: a transaction database D with minsup minimum

support.

Output: ordered fp-tree

The transaction database D is scanned to obtain the

support count of frequent items, and the frequent item set is

obtained. The frequent items are arranged in descending

order according to the support count, which is denoted as L.

Create a root node root "null" for ordered fp-tree,

each transaction in the transaction database T perform the

following operations: delete the transaction does not meet

the minimum support, the frequent items in descending order

support count, with a serial number in the L item - id instead

of every frequent items, the serial number to start from 0

ascending, remember after sorting sequence for [p | p], p for

the first element in the sequence, p for other elements. Then

call the insert_tree(p| p,root) method.

The implementation method of ert_tree(p| p,root) is

as follows: if root does not have child nodes, remember the

inserted node is node, then node.item-id=p, node.count=1,

and the parent pointer node points to root. Otherwise, find

the insertion location of p in the child node of root. If the

same node node as p is found, the value of node.count will

be increased by 1. If the same node is not found, create a

new node node, set the values of its various fields, and insert

the node before the next node of p. If P is not null,

insert_tree(P |P,root) is recursively called.

The following is the transaction database based on

table I and the ordered fp-tree constructed by the above

ordered fp-tree construction algorithm, as shown in Figure 1.
TABLE I

THE TRANSACTION DATABASE

Transaction Transaction set Ordered transaction set

T1 A,C,G A,G,C

T2 A,B,E,F A,E,F

T3 E,I E
T4 A,D,E,G A,E,G,D

T5 A,C,E,G A,E,G,C

T6 A,F,D A,D,F

Figure 1: Ordered fp-tree and item entry table

After the construction of the ordered fp-tree, the

values of the two joint pointer fields need to be changed so

that pc-link points to the parent node and node-link points to

the node with the same name, i.e. the next node of the same

item.

III. WEIGHTED MODEL

The project set I = { i1, i2, ..., ik} is a set of k

different items. The transaction database D={T1, T2,..., Tn},

where every transaction Ti(i = 1 , 2, ..., n) contains a unique

transaction identifier TID and a subset of I.

Definition 1 Let each item ij(j=1,2,...,k) in item set

I={i1,i2,...,ik} have a weight W(j), 0<=W(j)<=1. The project

item set X also has a corresponding weight, which is

recorded as
||/)()(XjWXWI

Xij






. The weight of the

transaction t in the transaction database D is denoted by

||/)(tWijtWT
tij






. The weighted support for association rule

BA is denoted as

))(/)(()sup(
,





TtTBATt

tWTtWTBAW



.

Definition 2 Let the minimum weighted support be

minsupW . If the item set X is a frequent item set, the

weighted support is not less than the minimum weighted

support, i.e.
minsup)sup(WXW 

.

Theorem 1 If item sets X and Y are respectively a

subset of I, i.e. IX  , IY  and YX  , then

)sup()sup(YWXW  .

Proof: Let the transaction data set containing X, Y

be Tx, Ty, because YX  , for
yt T

, there must be

Txt , so





tYTttXTt

tWTtWT
,,

)()(

,

)sup()sup(YWXW  can be obtained.

Theorem 2 (weighted downward closure property)

When IX  , IY  , YX  and X and Y have the same

prefix, if X is not frequent, Y must be infrequent.

Proof: From theorem 1, we know that

)sup()sup(YWXW  . If X is not frequent, we can know

supmin)sup(WXW  by definition 2. So

supmin)sup(WYW  , i.e. Y is not frequent.

The weighted model proposed here satisfies the

weighted downward closure property, ensuring that the

subset of frequent item sets is also frequent, and the parent-

set of infrequent item sets is also infrequent, so that frequent

item sets can be merged and infrequent item sets can be

pruned. Applying the weighted model to the weighted

association mining algorithm, we can optimize the algorithm

process to mine the weighted frequent item sets.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 5 (October 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.5.22

 156 This work is licensed under Creative Commons Attribution 4.0 International License.

IV. IMPLEMENT OF WEIGHTED

ORDERED FP-TREE ALGORITHM

 Taking table I transaction database as an example,

the weighted ordered fp-tree frequent pattern mining

algorithm includes the following four steps:

Step 1: scan the database and sort the project in descending

order of support.

Scanning the transaction database of Table I, we get

the project set I = { A, B, C, D, E, F, G, I} . We arrange the

items in the project set in descending order of support. When

the two projects have the same support, they are arranged in

alphabetical order. This arrangement ensures that the sorting

results are consistent each time. The ordering of the items

and their weights are shown in Table II.
TABLE II

PROJECT NAME AND ITS WEIGHT

Project name Weight

A 3

E 4
G 2

C 3

D 4

F 5

B 1

I 1

Step 2: scan the database to normalize the transaction

weight.

Scanning transaction database calculates the weight

of each transaction, i.e.

||/)(tWijtWT
tij






, for

example, t1 = { A, C, G} , WT(t1) = (3 + 3 + 2) / 3 = 2.67.

For the same reason, the weight of each transaction is shown

in the third column of Table 3.In order to solve the problem

that the weight is greater than 1, the transaction weight is

normalized, which is also beneficial to the improvement of

the algorithm efficiency. The sum of the transaction weights

is




T

WTTW
t

)t()(

, and the transaction weights are

normalized to calculate the weight ratio of each transaction,

for example, t1 = { A, C, G} , WT(t1) = 2.67, W(T) = 18.67,

WT(t1) / W(T) = 0.1430. Similarly, the normalized

transaction weights are shown in the fourth column of Table

III. Also, WT(t1) / W(T) + WT(t2) / W(T) + ... + WT(ti) /

W(T) = 1.
TABLE III

TRANSACTION WEIGHT TABLE

Transaction Item set
Transaction

weight

the

normalized

transaction
weight

T1 A,C,G 2.67 0.1430

T2 A,B,E,F 3.25 0.1741

T3 E,I 2.50 0.1339

T4 A,D,E,G 3.25 0.1741
T5 A,C,E,G 3.00 0.1607

T6 A,F,D 4.00 0.2142

The sum of the

transaction

weights

 18.67 1.0000

Step 3: construct the weighted ordered fp-tree.

Weighted ordered fp-tree is defined as follows:

(1) The structure of weighted ordered fp-tree

is similar to that of the above ordered fp-tree. Each node is

still composed of four domains, with the difference that the

count recording the path number of node arrival points is

changed to the sum of the normalized weights of the

transaction set to which the node belongs. The four domains

are respectively the node serial number item-id, the sum

count of the normalized weight of the transaction set to

which the node belongs, the pc-link joint pointer domain of

the parent node pointer and child node pointer, and the node-

link joint pointer domain of the sibling node pointer and the

node pointer of the same name.

(2) The structure of item header table is node-

id, node-link and weight. Where, node-id is the item

sequence number of the item header table; Node-link points

to the first node with the same value as the node-id field.

Weight records the sum of the normalized weights of the

transaction set to which the item belongs. For example, the

node id = '2', 'G', WI (' G ') = 0.1430 + 0.1741 + 0.1607 =

0.4778.

The following is a weighted FP-tree construction

algorithm:

Input: transaction database D, minimum weighted support

Wminsup

Output: Weighted FP-tree

Scan the transaction database, calculate the

weighted support of each item, and establish the item header

table in descending order of weighted support.

We create a root node (i.e. root) with the initial

value set to "Null" . For each transaction T in the transaction

database, the following operations are performed: deleting

items that do not satisfy the minimum weighted support

degree, frequent items are sorted in descending order of

support degree, and the sorted transaction T is [i, I] , where i

is the first element of the transaction and I is a collection of

remaining elements. Recursively call updataFPtree([i, I] ,

root) . The method is performed as follows: First, look up i

in the child node of root. If the same node as i is found, the

count field of the Node records the weight of the normalized

transaction set of the Node; If the same node as i is not

found, we create a new node and set its count field value to

the normalized weight of the transaction set of Node. The

new node is linked to its parent node root, and is linked to

the same node through the node chain structure. If I is not

empty, recursively call updataFPtree([i, I] , root) .

Let Wminsup = 0.2, the constructed weighted

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 5 (October 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.5.22

 157 This work is licensed under Creative Commons Attribution 4.0 International License.

ordered fp-tree is shown in Figure 2.

Figure 2: Weighted ordered fp-tree

Step 4: mining weighted ordered fp-tree.

According to theorem 2, the item set with the same

prefix has weighted downward closure property, so we start

from the second item of the head table to generate the

condition pattern base of each item, and construct the

weighted condition FP-tree according to the condition

pattern base. Table IV shows the corresponding weighted

condition FP-tree and frequent mode.

TABLE IV

WEIGHTED CONDITION FP-TREE AND FREQUENT MODE

Project
name

Weighted condition
FP-tree

frequent mode

E <A:0.8661> {A,E:0.8661}

G <A:0.5197,E:0.3214>
{A,G:0.5197},{E,G:0.3214},

{A,E,C:0.3214}

D <A:0.3464> {A,D:0.3464}
F <A:0.3464> {A,F:0.3464}

C <A:0.3464> {A,C:0.3464}

V. ALGORITHM ANALYSIS AND

EXPERIMENTAL RESULTS

By normalizing transaction weights, the weighted

model used in the proposed algorithm is more efficient than

the traditional weighted model, and the weighted downward

closure of the weighted model saves some mining time, thus

improving the efficiency of the algorithm. By using the

ordered fp-tree data structure to store data, candidate item

sets need not be generated repeatedly, which reduces The

Times of scanning the database and saves the I/O overhead.

In addition, the process of discovering long frequent item

sets is transformed into recursively discovering some short

frequent item sets and then concatenating suffixes, thereby

reducing the search overhead.

Experimental performance comparison was made

between the weighted ordered fp-tree algorithm and the

weighted fp-tree algorithm (the weighted ordered fp-tree

algorithm is denoted as WOFP algorithm, and the weighted

fp-tree algorithm is denoted as WFP algorithm), and the

experimental results were shown in Figure 3. The

experimental environment: Windows10 operating system,

8GB of memory, and Pycharm2018 development

environment. The transaction set is generated by python

code for 100,000 transactions, each with a maximum length

of 10.

Figure 3: Experimental result

In the experiment, with the minimum weighted

support increasing from 0.1 to 0.7, the execution time of the

two algorithms gradually decreased. With the same

minimum weighted support, the improved WOFP algorithm

performs faster than the WFP algorithm.

VI. CONCLUSION

This paper improves the weighted fp-tree algorithm

and replaces the traditional fp-tree with ordered fp-tree,

which makes full use of the structure space of the tree and

saves the time of mining fp-tree. In addition, weight is added

to the data to make the data more convincing. Compared

with the weighted fp-tree algorithm, the improved algorithm

has better performance.

REFERENCES

[1] Agrawal, Rakesh & Srikant, et al. (1994). Fast

algorithms for mining association rules. In: International

Conference on Very Large Data Bases. Santiago, Chile,

pp. 487-499.

[2] Han J, Pei J, & Yin Y. (2000). Mining frequent patterns

without candidate generation. In: ACM SIGMOD

International Conference on Management of Data. Dallas,

TX, United states, pp. 1-12.

[3] Wen Chen. (2012). Mining algorithm for weighted

frequent pattern based on Fp tree. Computer Engineering,

38(6), 63-65.

[4] C.H. Cai, W.C. Ada, W.C. Fu, & C.H. Cheng, et al.

(1998). Mining association rules with weighted items. In:

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 5 (October 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.5.22

 158 This work is licensed under Creative Commons Attribution 4.0 International License.

Proceedings of the International Database Engineering and

Application Symposium. Cardiff, UK, pp. 68-77.

[5] F. Tao, F. Murtagh, & M. Farid. (2003). Weighted

association rule mining using weighted support and

significance framework. In: 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

KDD '03. Washington, DC, United states, pp. 661-666.

[6] Zhaopeng Pan, Peiyu Liu, & Jing Yi. (2018). An

improved fp-tree algorithm for mining maximal frequent

patterns. In: 10th International Conference on Measuring

Technology and Mechatronics Automation (ICMTMA).

Changsha, China, pp. 309-312.

[7] T. Saha, et al. (2018). Association rules to analyze

hospital resources with mortality rates. In: 5th International

Conference on Business and Industrial Research (ICBIR).

Bangkok, Thailand, pp. 51-56.

[8] Yan Shi & Yan Fu. (2006). Algorithm for frequent

pattern mining based on fp reference tree/list. Computer

Science, 33(6), 206-209.

[9] K. Sun & F. Bai. (2008). Mining weighted association

rules without preassigned weights. IEEE Transactions on

Knowledge and Data Engineering, 20(4), 489-495.

[10] Yan Wang, Haiyan Xue, & Lingling Li, et al. (2010).

An improved algorithm for mining weighted frequent

itemsets. Computer Engineering and Applications, 46(23),

135-137+197.

[11] Haitao Hao & Yuanyuan Ma. (2016). Research on

ecommerce commodity recommendation system-based on

mining algorithm of weighted association rules. Modern

Electronic Technology, 39(15), 133-136.

[12] Shuai Yue & Shaohong Yin. (2018). Study on frequent

patterns mining based on sorted FP-Tree and two-

dimensional table. Journal of Harbin University of

Commerce(Natural Science Edition), 34(6), 692-697.

[13] Hongguang Xiao, Guoqun Deng, & Wen Tan, et al.

(2018). A weighted association rules mining algorithm based

on matrix compression. Measurement and Control

Technology, 37(3), 10-13.

