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ABSTRACT 
In this study, a model for the tuberculosis infection 

considering vaccination and lost-sight compartement is 

formulated. there are six populations in this model, 

Susceptibled, vaccinated, exposed, lost sight, infected, and 

recovered. The lost sight populations are infected but do not 

get any treatment and still can spread the tuberculosis, the 

infected population are infected but already got a treatment 

and no longer spread the tuberculosis. The local stability are 

obtained by analyzing the epidemic threshold ℛ0. The result 

shows that the disease-free equilibrium is locally 

asymptotically stable when the condition ℛ0<1 is satisfied, and 

the unique endemic equilibrium exist and it is locally 

asymptotically stable if  ℛ0>1 is satisfied. The numerical 

simulation are also performed to support the analytical result. 
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I.  INTRODUCTION 
 

Tuberculosis (TB) is one of the most infectious 

diseases caused by mycobacterium tuberculosis. It can 

attack various organs, mainly the lungs. This disease can 

lead to complications and death if the sufferer does not take 

any treatment or involved in incomplete treatment. 

Tuberculosis had allegedly appeared since 5000 years BC 

but the cure was just discovered in the last two century [7]. 

TB bacteria are spread through the air when 

infected person coughs or speaks. When a person nearby 

breaths the air, the bacteria will settle in the lungs and they 

can move to other organs. Individuals with TB will 

experience several symptoms such as bad coughs, weight 

loss and night sweating. The symptoms usually appear 

slowly within a few months and it impacts on the delay of 

the treatment. Without intensive treatment, two out of three 

cases of TB disease will lead to death [11]. 

Worldwide, TB is one of the major public health 

issues. It is among one of the top 10 causes of death and the 

leading cause from a single infectious agent (above 

HIV/AIDS). In 2017 TB caused an estimated 1,3 million 

deaths among HIV negative people and also 300.000 deaths 

from TB among HIV-positive people. Globally, there are 10 

million people developed TB disease in 2017: 5,8 million 

men, 3,2 million women, and 1 million children [11]. From 

the latest data, Indonesia ranks the third place after India 

and China in terms of the infected number of TB in the 

world. There are estimated more than 1 million cases of TB 

in Indonesia but only 420.000 cases were reported to 

Ministry of  Health [12]. 

The controlling of the TB cases in Indonesia were 

done by several strategies. Started with Directly Observed 

Treatment Short-Course (DOTS) at 1995-2005, followed by 

stop TB strategy at 2006-2015. Then according to the 

results of the prevalence survey, the strategy was revised to 

the TB elimination strategy. According to this strategy, the 

notification of tuberculosis cases increase drastically and 

the success of national tuberculosis treatment remains high 

at 87% [12]. 

One of the challenge of the TB prevention 

program is Multi Drug Resistance (MDR) TB. This is the 

state when the body is resistant to at least izonaid and 

rifampin, the two most potent TB drugs [3]. It worsens the 

patient’s condition and increases the infectious rate. It is 

caused by misuse or mismanagement of TB drugs treatment 

such as the wrong dose of drugs or incomplete treatment. It 

is more common in people who do not take their drugs 

regularly and continuously by reason of the cost of the 

drugs, the access to public health facilities, and side effect 

of the drugs. Reported cases of MDR-TB in Indonesia keep 

increasing since 2011 and not all of them were confirmed to 

retake the treatment [12]. 

In eradicating the infectious diseases including 

tuberculosis, one essential thing that should be considered 

is controlling the number of infection. Mathematics had 

been an important tool in analyzing the transmission 

behavior of the disease [5]. Many studies about 

mathematical models and its analysis of TB infection had 

been conducted. Temgouaet al. [8] developed the model for 

tuberculosis with lost sight and multi-latent compartment. 

Another study conducted by Aprilianiet al. [1] analyzed the 

SEIR model along with the vaccination compartment. This 

study combines the existing models mentioned before to 

analyze the effect of treatment, treatment adherence, and 

vaccination in suppressing the spread of TB infectious. 

 

II.  MATHEMATICAL MODEL 
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The total population denoted by 𝑁(𝑡) is divided 

into seven compartments, 𝑆(𝑡) represents the susceptible 

population, 𝑉 𝑡  represents the number of infected 

vaccinated population, 𝐸(𝑡) represents the number of 

exposed population, 𝐿(𝑡) represents the number of lost 

sight population, 𝐼(𝑡) represents the number of infected 

population, and 𝑅(𝑡) represents the number of recovered 

population. 

In this model, the susceptible individual will go to 

the exposed population first before becoming infectious. 

The exposed individual will progress either to infected 

population or lost sight population. Individuals at Infected 

population are given a treatment and progress to recovered 

population after they complete the treatment. Lost sight 

population are the individuals from exposed population 

who does not take any treatment and individuals from 

infected population who does not complete the treatment. It 

can also go back to the infected population whenever they 

retake the treatment. We consider that the infected 

individuals in treatment cannot spread the disease because 

they are under surveillance, therefore the disease can only 

be spread by lost sight population. Vaccinated populations 

can also be infected but in lower rate depending on the 

vaccination effectiveness rate. The flow diagram is shown 

in Figure 1. 

 
Fig 1. Diagram flow of tuberculosis infectious 

 

Based on the diagram flow above, we formulate 

the following system of ordinary differential equation: 
𝑑𝑆

𝑑𝑡
= Γ− 𝛽𝑆𝐿 − (𝜇 + 𝜃)𝑆, 

𝑑𝑉

𝑑𝑡
=  𝜃𝑆 − 𝜇𝑉 −  1 − 𝜎 𝛽𝑉𝐿,                                                (1) 

𝑑𝐸

𝑑𝑡
=  1 − 𝑝 𝛽𝑆𝐿 +  1 − 𝜎 𝛽𝑉𝐿 − (𝜇 + 𝑣 + 𝑐)𝐸, 

𝑑𝐿

𝑑𝑡
= 𝑝𝑓𝛽𝑆𝐿 + 𝑞𝑣𝐸 + 𝜙 1 − 𝑐 𝐼 −  𝜇 + 𝜇𝑡 + 𝑐 𝐿 − 𝛿(1

− 𝑐)𝐿, 

 

𝑑𝐼

𝑑𝑡
= 𝑝 1 − 𝑓 𝛽𝑆𝐿 +  1 − 𝑞 𝑣𝐸 + 𝛿 1 − 𝑐 𝐿 −  𝜇 + 𝜇𝑡 + 𝑐  

         −𝜙 1 − 𝑐 𝐼, 
𝑑𝑅

𝑑𝑡
= 𝑐(𝐸 + 𝐿 + 𝐼) − 𝜇𝑅, 

 

III.  RESULT AND DISCUSSION 
 

System (1) has a disease-free equilibrium given 

by: 

𝑇0 𝑆, 𝑉, 𝐸, 𝐿, 𝐼, 𝑅 = (
𝛾

𝜃+𝜇
,

𝛾𝜃

𝜇(𝜃+𝜇)
, 0,0,0,0), 

And an endemic equilibrium given by: 

𝑇∗ 𝑆, 𝑉, 𝐸, 𝐿, 𝐼, 𝑅 = (𝑆∗, 𝑉∗, 𝐸∗, 𝐿∗, 𝐼∗, 𝑅∗), 
Where 

𝑆∗ =
𝛾

𝐿𝛽 + 𝜃 + 𝜇
 𝐿∗ =

𝑒𝑞𝜈 + 𝐼𝜙 − 𝑐𝐼𝜙

𝑐 − 𝑝𝑆𝛽 + 𝛿 − 𝑐𝛿 + 𝜇 + μt
 

𝑉∗ =
𝑆𝜃

𝐿𝛽 + 𝜇 − 𝐿𝛽𝜎
 𝐼∗ =

𝐿(𝑆𝛽 + 𝛿 − 𝑐𝛿) − 𝑒(𝑞 − 1)𝜈

𝑐 + 𝜇 + μt + 𝜙 − 𝑐𝜙
 

𝐸∗ =
𝐿𝛽(𝑆(1 − 𝑝) + 𝑉 − 𝑉𝜎)

𝑐 + 𝜇 + 𝜈
 𝑅∗ =

𝑐(𝑒 + 𝐿 + 𝐼)

𝜇
 

Basic reproduction number, denoted by ℛ0, is an 

expected number of secondary cases produced by a typical 

infective individual in a completely susceptible population. 

It is obtained by the next generation matrix formulated in 

[4]. We obtain the basic reproduction number as follows: 

 ℛ0 = ℛ0
1 + ℛ0

2 + ℛ0
3 + ℛ0

4  (2) 

where 

ℛ0
1 =

𝛽𝛾𝑓𝑝

(𝜃 + 𝜇)(𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐)
 

ℛ0
2

=  
𝛽𝛾𝑞𝑣[𝜃(1 − 𝜎) + 𝜇(1 − 𝑝)]

𝜇(𝜃 + 𝜇)(𝜇 + 𝜇𝑡 + 𝑐)(𝜇 + 𝑐 + 𝑣)(𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐)
 

ℛ0
3

=
𝛽𝛾𝑣𝜃(1 − 𝜎)(𝜙 − 𝜙𝑐)

𝜇(𝜃 + 𝜇)(𝜇 + 𝜇𝑡 + 𝑐)(𝜇 + 𝑐 + 𝑣)(𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐)
 

ℛ0
4

=
𝜇𝛽𝛾𝑝(𝑐 + 𝜇)(𝜙 − 𝜙𝑐)

𝜇(𝜃 + 𝜇)(𝜇 + 𝜇𝑡 + 𝑐)(𝜇 + 𝑐 + 𝑣)(𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐)
 

 

Theorem 1: The disease-free equilibrium is locally 

asymptotically stable if  ℛ0 < 1. 

Proof: After linearization for system (1) at 𝑇0 we 

have a Jacobian matrix as follows: 

𝐽𝑇0
=

 

 
 
 

𝐽11 0 0 𝐽14 0 0
𝐽21 𝐽22 0 𝐽24 0 0
0 0 𝐽33 𝐽34 0 0
0 0 𝐽43 𝐽44 𝐽45 0
0 0 𝐽53 𝐽54 𝐽55 0
0 0 𝐽63 𝐽64 𝐽65 𝐽66 
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where: 

𝐽11 = −𝜃 − 𝜇  𝐽53 = (1 − 𝑞)𝜈 

𝐽14 = −
𝛽𝛾

𝜃+𝜇
  𝐽54 = (1 − 𝑐)𝛿 +

(1−𝑓)𝑝𝛽𝛾

𝜃+𝜇
 

𝐽22 = −𝜇  𝐽55 = −𝑐 − 𝜇 − μt − (1 − 𝑐)𝜙 

𝐽24 = −
𝛽𝛾𝜃 (1−𝜎)

𝜇(𝜃+𝜇)
  𝐽63 = 𝑐  

𝐽33 = −𝑐 − 𝜇 − 𝜈 𝐽64 = 𝑐 

𝐽34 =
𝛽𝛾 [𝜇(1−𝑝)+𝜃(1−𝜎)]

𝜇 (𝜃+𝜇)
 𝐽65 = 𝑐  

𝐽43 = 𝑞𝜈   𝐽66 = −𝜇 

𝐽44 =
𝑓𝑝𝛽𝛾

𝜃+𝜇
− (1 − 𝑐)𝛿 − 𝜇 − μt 𝐽45 = (1 − 𝑐)𝜙  

The eigen values are obtained by   𝐽𝑇0
− 𝜆𝐼 = 0 

therefore we have the characteristic equation as follows: 

 𝜆 − 𝐽11  𝜆 − 𝐽22  𝜆 − 𝐽66  𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 
= 0 

(3) 

where 

𝑎1 = (𝜇 + 𝜇𝑡 + 𝑐) + (𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐) −
𝛽𝛾𝑓𝑝

(𝜃 + 𝜇)
 

𝑎2 =  (𝜇 + 𝜇𝑡 + 𝑐) + (𝜇 + 𝑐 + 𝑣)  (𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐)

−
𝛽𝛾𝑓𝑝

(𝜃 + 𝜇)
 

+  𝜇 + 𝑐 + 𝑣  𝜇 + 𝜇𝑡 + 𝑐  1

−  
𝑞𝑣 𝜃 1 − 𝜎 + 𝜇 1 − 𝑝  

𝜇(𝜃 + 𝜇)(𝜇 + 𝜇𝑡 + 𝑐)(𝜇 + 𝑐 + 𝑣)

+
𝛽𝛾𝑝(𝜙 − 𝜙𝑐)

𝜇(𝜃 + 𝜇)(𝜇 + 𝜇𝑡 + 𝑐)(𝜇 + 𝑐 + 𝑣)
   

𝑎3 = (𝜇 + 𝜇𝑡 + 𝑐)(𝜇 + 𝑐 + 𝑣)(𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐)((1 − (ℛ0

+ ℛ0
4(

1

𝜃(1 − 𝜎)
) 

From equation (3) we obtain the eigenvalues as 

follows: 

𝜆1 = −𝜃 − 𝜇, 𝜆3 = −𝜇  𝜆2 = −𝜇   

All the eigenvalues above are negative, the others 

will be obtained by solving the following equation: 
 𝜆3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3  (4) 

There are three conditions that must be satisfied 

for the cubic equation above: 

 𝜆4 + 𝜆5 + 𝜆6 = −𝑎1 
𝜆4𝜆5 + 𝜆4𝜆6 + 𝜆5𝜆6 = 𝑎2  

𝜆4𝜆5𝜆6 = −𝑎3  
(5) 

Let ℛ0 < 1, such that according to equation (2) we 

have: 

 ℛ0
1 + ℛ0

2 + ℛ0
3 + ℛ0

4 < 1 (6) 

Since ℛ0
1 > 0, ℛ0

2 > 0, ℛ0
3 > 0,  ℛ0

4 > 0,therefore 

ℛ0
1 < 1, ℛ0

2 < 1, ℛ0
3 < 1,  ℛ0

4 < 1. ℛ0
1 < 1gives: 

 
 𝜇 + 𝜇𝑡 + 𝑐 + 𝛿 − 𝛿𝑐 + 𝜙 − 𝜙𝑐 >

𝛽𝛾𝑓𝑝

 𝜃 + 𝜇 
 (7) 

Inequality (7) gives 𝑎1 > 0 

ℛ0
2 < 1gives 

𝛽𝛾𝑞𝑣 [𝜃(1−𝜎)+𝜇(1−𝑝)]

𝜇(𝜃+𝜇)(𝜇+𝜇𝑡+𝑐)(𝜇+𝑐+𝑣)(𝜇+𝜇𝑡+𝑐+𝛿−𝛿𝑐+𝜙−𝜙𝑐)
< 1, and 

ℛ0
4 < 1 gives 

𝜇𝛽𝛾𝑝 (𝑐+𝜇)(𝜙−𝜙𝑐)

𝜇(𝜃+𝜇)(𝜇+𝜇𝑡+𝑐)(𝜇+𝑐+𝑣)(𝜇+𝜇𝑡+𝑐+𝛿−𝛿𝑐+𝜙−𝜙𝑐)
< 1. Then 

we assume that 

 𝛽𝛾𝑞𝑣 𝜃 1 − 𝜎 + 𝜇 1 − 𝑝  

𝜇 𝜃 + 𝜇  𝜇 + 𝜇𝑡 + 𝑐  𝜇 + 𝑐 + 𝑣 
< 1 (8) 

 𝛽𝛾𝑝(𝜙 − 𝜙𝑐)

𝜇 𝜃 + 𝜇  𝜇 + 𝜇𝑡 + 𝑐  𝜇 + 𝑐 + 𝑣 
< 1 (9) 

Inequalities (8) and (9) gives 𝑎2 > 0 and we also 

assume that ℛ0
4  

1

𝜃 1−𝜎 
 < 1which gives 𝑎3 > 0. 

Therefore, the conditions (7) will be satisfied when 𝜆5 <
0and 𝜆6 < 0. 

Since all the eigenvalues are negative when 

ℛ0 < 1, according to [9], it is proved that the disease-free 

equilibrium is locally asymptotically stable if ℛ0 < 1. 

 

Theorem 3: the endemic equilibrium is locally 

asymptotically stable if ℛ0 > 1 

 

Proof: According to Castillo-Chaves and Song [2], let 

𝜑 = 𝛽3 be a bifurcation parameter. When ℛ0 = 1, we have  

 
 

The disease-free equilibrium has five negative 

eigenvalue and one zero eigenvalue. The zero eigenvalue 

has a right-side eigenvector (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6) and a 

left-side eigenvector (𝑣1 , 𝑣2 , 𝑣3, 𝑣4 , 𝑣5, 𝑣6) where 

𝑢1 < 0, 𝑢2 < 0, 𝑢3 > 0, 𝑢4 > 0, 𝑢5 > 0, 𝑢6 > 0, 𝑣1 = 0, 

𝑣2 = 0, 𝑣3 > 0, 𝑣4 > 0, 𝑣5 > 0, and𝑣6 = 0 

 

Now we define 

 
𝑎 =  𝑣𝑘𝑢𝑖𝑢𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

 𝑻𝟎, 0 .

6

𝑘,𝑖,𝑗=1

 

𝑏 =  𝑣𝑘𝑢𝑖
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝜑

 𝑻𝟎, 0 .

6

𝑘,𝑖=1

 

(12) 

where 
𝑥1 = 𝑆,  𝑓1 = 𝛾 − 𝛽𝑥1𝑥4 − (𝜇 + 𝜃)𝑥1, 

𝑥2 = 𝑉, 𝑓2 = 𝜃𝑥1 − 𝜇𝑥2 − (1 − 𝜎)𝛽𝑥2𝑥4, 

𝑥3 = 𝐸, 𝑓3 = (1 − 𝑝)𝛽𝑥1𝑥4 + (1 − 𝜎)𝛽𝑥2𝑥4 − (𝜇 + 𝜈 + 𝑐)𝑥3, 

𝑥4 = 𝐿, 𝑓4 = 𝑝𝛽𝑥1𝑥4 + 𝑞𝜈𝑥3 + 𝜙 1 − 𝑐 𝑥5 −  𝜇 + 𝜇𝑡 +
𝑐𝑥4−𝛿 1−𝑐)𝑥4 

𝑥5 = 𝐼, 𝑓5 = 𝛽𝑥1𝑥4 + (1 − 𝑞)𝑥2𝑥3 + 𝛿(1 − 𝑐)𝑥4 − (𝜇 + 𝜇𝑡 +
𝑐)𝑥5 − 𝜙(1 − 𝑐)𝑥5, 

𝑥6 = 𝑅, 𝑓6 = 𝑐(𝑥4 + 𝑥5 + 𝑥3) − 𝜇𝑥6, 

 

And we obtain partial derivatives for 𝑎: 

𝜕2𝑓3

𝜕𝑥2𝜕𝑥4

 𝑻𝟎, 𝜑∗ = (1 − 𝜎)𝜑∗ 

𝜕2𝑓4

𝜕𝑥1𝜕𝑥4

 𝑻𝟎, 𝜑∗ = 𝑝𝑓𝜑∗ 
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𝜕2𝑓2

𝜕𝑥1𝜕𝑥4

 𝑻𝟎, 𝜑∗ = (1 − 𝑝)𝜑∗ 

𝜕2𝑓5

𝜕𝑥1𝜕𝑥4

 𝑇0 , 𝜑∗ = 𝑝(1 − 𝑓)𝜑∗ 

also partial derivatives for 𝑏: 

𝜕2𝑓3

𝜕𝑥1𝜕𝜑
 𝑻𝟎, 𝜑∗ = (1 − 𝑝)𝑥4 

𝜕2𝑓4

𝜕𝑥4𝜕𝜑
 𝑻𝟎, 𝜑∗ = 𝑝𝑓𝑥1 

𝜕2𝑓3

𝜕𝑥2𝜕𝜑
 𝑻𝟎, 𝜑∗ =  1 − 𝜎 𝑥4 

𝜕2𝑓5

𝜕𝑥1𝜕𝜑
 𝑻𝟎, 𝜑∗ = 𝑝(1 − 𝑓)𝑥4 

𝜕2𝑓3

𝜕𝑥4𝜕𝜑
 𝑻𝟎, 𝜑∗ = (1 − 𝑝)𝑥1 

𝜕2𝑓5

𝜕𝑥4𝜕𝜑
 𝑻𝟎, 𝜑∗ = 𝑝 1 − 𝑓 𝑥1  

𝜕2𝑓4

𝜕𝑥1𝜕𝜑
 𝑻𝟎, 𝜑∗ = 𝑝𝑓𝑥4 

According to equation (12) we obtain 𝑎 < 0and 

𝑏 > 0. 

Consequently, when 𝜑 changes from 𝜑 < 𝜑∗to 

𝜑 > 𝜑∗, the free-disease equilibrium changes from stable 

to unstable and the endemic equilibrium changes from 

negative to  

positive and it is locally asymptotically stable. It proves that 

the endemic equilibrium is locally asymptotically stable if 

ℛ0 > 1.

 

IV.  NUMERICAL RESULT 
 

We perform the numerical simulation to support 

the analytical result. The simulation visualizes the 

dynamical population in both condition, ℛ0 < 1 and 

ℛ0 > 1 according to theorem 1 and theorem 2. The initial 

conditions we use for this simulation are: 𝑆 0 =
10.000, 𝑉 0 = 50.000, 𝐸 0 = 10.000, 𝐿 0 = 5000dan 

𝑅 0 = 0. And the parameter values are presented as 

follows: 

 

 

Table 1 Parameter Values 

Parameter 
Value 

Source 
ℛ0 < 1 ℛ0 > 1 

γ 1 1 [1] 

𝜇 -0.996691 -1.06243 [1] 

𝜇𝑇  -0.302297 -0.148983 [1] 

𝛽 0.236319 0.578424 [1] 

𝜃 1 1 [1] 

𝜎 0.10979 0.127638 [1] 

𝑐 0.139156 0.129349 [1] 

𝑣 -0.89669 -0.052261 [1] 

𝛿 0.375597 0.0997238 [8] 

ϕ 0.73202 0.389793 [8] 

𝑝 -0.603326 -0.648159 [1] 

𝑓 -0.778148 -0.553713 [1] 

𝑞 -0.187724 -0.107216 [1] 
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Figure 2: the population dynamic at ℛ0 < 1 and ℛ0 > 1 

 

V.  CONCLUSION 
 

We’ve formulated a model for TB transmission by 

combining the existing model with vaccinated and lost sight 

in a form of ordinary differential equation system. The 

system gives two equilibrium, a free-disease equilibrium 

and an endemic equilibrium. A free-disease equilibrium is a 

state when there is no outbreak in population, and endemic 

equilibrium is a state when the disease is endemic in 

population. 

The stability analysis shows that the disease-free 

equilibrium is locally asymptotically stable if ℛ0 < 1 is 

satisfied and the endemic equilibrium is locally 

asymptotically stable if ℛ0 > 1 is satisfied. The numerical 

simulation shows the suitable result with the stability 

analysis. 
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