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ABSTRACT

In this chapter, the authors extend the theory of
the generalized difference Operator A, to the generalized
difference operator of the nt*kind denoted by A, Where L
=L = {l4,1,,....1,,} of positive realsly,l,,....I,and obtain some
interesting results on the relation between the generalized
polynomial factorial of the first kind, nt"kind and algebraic
polynomials. Also formulae for the sum of the general
partial sums of products of several powers of consecutive
terms of an Arithmetic progression in number theory are
derived.
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. INTRODUCTION

The theory of difference equations is based on
the operator Adefined as
Q) AX(n)=x(n+1)—=x(n),n eW

Where W = {-3,-2,-1, 0, 1, 2, 3, - - -,}. Even
though many authors [1, 9—11], have defined A as

(2) AX(n) = x(n + £) —x(n), £ €N, no significant
progress took place on this line. But recently, when we
took up the definition of A as given in (2) and developed
the theory of difference equations in a different direction,
we obtained some interesting results in number theory.
For convenience, we labelled the operator A defined by
(2) as A, £ € W, named it as the generalized difference
operator and by defining its inverse A—1 £ we obtained
many interesting results in number theory.

The theory was then extended for real £ € (0, «)
and A_¢x(n) = x(n—¢) —x(n) and again many useful results
were obtained in number theory. By extending the study
for sequences of complex numbers and £ to be real, some
new qualitative properties like rotatory, expanding and
shrinking, spiral and web like were studied for the
solutions of difference equations involving A,.

The results obtained can be found in [3-8].With
this background, in this paper, we develop theory for A,
the generalized difference operator of the n kind and
obtain some significant results, relations and formulae in
number theory using Stirling numbers of the second kind,
S,". Throughout this paper, we make use of the following
assumptions.

(i) ¢, €1, €2, ..., £nare real numbers, C is the set of all complex numbers,

(i) cj, 0j,clj, . . ., c(n—1)j are constants, [x] = integer part of x,

(iii)where 0'=1,r'=1,2,...r1,

(VW@ ={aa+1a+2 ... 5WeG)=4{j+0i+20...}

(vyL={e1,¢e2,...,0n}
(vi) O(L) = {o}, ¢ denotes the empty set,
(vii) 1(L) = {{e1}, {e23, ..., {tn}},

(viii) 2(L) = {{¢1, €2}, {1, €3}, ..., {eL, en}, {2, €3}, ... {2, en}, ..., {tn-1, tn}},
(ix) (n—1) (L) = {{e1, €2, ..., tn-1}, {1, €2, ..., tn—2, tn},. .., {02, €3, ..., (n}},

() n(L) = {{€1, €2, . . ., tn}},

(xi) In general, r(L) = the set of all subsets of size r of the set L and

(xii) go(L) =nS r=0 r(L), the power set of L.
1. PRELIMINARIES
In this section, we present some basic definitions

and preliminary results which will be useful for further
discussion.

Definition-1: For a function u (k), ke [0,0), the
generalized difference operator A,is defined by

Aju(k) =
u(k + 1) —u(k). €Y
Definition-2: The generalized difference operator of the
n" _kind, denoted as A, for the function
u(k), ke [0, ), is defined as

162 This work is licensed under Creative Commons Attribution 4.0 International License.



International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-1SSN: 2394-6962
Volume- 9, Issue- 3 (June 2019)
www.ijemr.net https://doi.org/10.31033/ijemr.9.3.07

AL u(k) = Z (1) Z u<k+2l> . )
Aep=ur(L)

r=-n leA
where k¥ = k(k — 1)(k — 21)(k — 30) ... (k — (t — D).
NOte that AL = AllAlz Aln'

Definition-3: The generalized polynomial factorial of the n™ —kind, defined as

kf)=i(_1)n_(_n) Z (k + Z DY e (3)
r=1

Aer(L)Cp(D) lieA—{1;}

Definition-4: If I € (0,0) and n € N(1), then the inverse operator A;!
Is defined as if
A (z(k)) = u(k), then z(k) = A7 (u(k)) + ¢, (4)

Where c; is a constant for all k € N;(j),j = k — [ﬂ l.

The inverse of the gereralized difference operator of the

— kind denoted by Af lis defined as if A z(k) = u(k), then
(n-1) k(n 2)

a1 ln-1 ln—2
z(k) = A u(k) + croy) 7( 1 2] t Ctn-2); 7(71 ONE
k(Z)
+ - +C2] (2)' lZ+C1 l+C0, (5)
where cl] s are constants. In general A;™ = [1(Af(m_1) )

Lemma 6. If the Stirling numbers of the first kind is given by
st=1,s"=0forr<landr = (n+1),ands?*! =s", —ns? forr > 1,

Then
Z(s, rrEry = k™, 6)
Lemma 5. 2 7 [14] Ifsr s are the stirling numbers of the second kind, then
k= Z st IR, %)
=1

Il. MAIN RESULTS

In this section, we present the formula for sum of general partial sums of products of consecutive terms of higher
powers of an arithmetic progression.
Theorem 1
If ne N(Z) l € (O o) and k € (nl 00) then

Th-1 Th-2

AL lu(k)_z Z Z ZZu(k—rl Tyoql = =1l —mnl)

™m=21p-1=1r_2=1 rp=17r1=0

(n-1) (n-2) (1)
kl kl kl
FCm-1)) (n—1)! n—1 * Cn-2)) (n—2)! [n-2 Tty 1 + o), ®

wherer,; = [T] Lry_ = r:_(i_l)fori =1,2,..,n—1and
) k
Cojy C1jy +++» C(n—1);S Are cOnstants forallk € N;(j),j =k — [T] land whenn = 1,
k
[7]
Artu(k) = Zu(k —rD) + co;.

r=1
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Proof:
([l G [7
Since A, { u(k —rl) } = Z utk+1—-rl) - Z u(k —rl) = u(k),
kr=1 J r=1 r=1
Definition 1, we can obtain
[1]
Z u(k —rl) = A 'uk) + ¢ 9

r=1
Since Ajf = A7H(ATY), by taking A; 'on bothsides of (9) and again applying
(9), we get
k1 [k
[ [i]-

z z u(k _Tzl _Tll) + Cl] +C0] - All u(k)

r=1 r=

proceeding in this way and using the relation A, ;; ;= AjA; ... A;, we get(8)
and hence the proof of the theorem.
Lemma 1
If m, n are positive integers, 1 is a real and m > nl, then
O (k—n-1DD"—n—-1k—-n-2)D™ + (1) k™
m

1
== s (10)

r=1

k(m+2n 1) k(n 1)
(ll)A_1 k(m) — ol +c Y S
Ll = £ D+ 2) . (m+ 20— DI O o 1yt

kl(n 2) k(2) kl(l)
+C(n—2); <—(n — ) ln_2> +--+c C2; (2)' lz <T> + ¢y (11
m

(i) k™ = lz mrant k& (12)
n r=1
Proof:
The proof follows from definitions 2, 3, 5 and the stirling numbers.
Theorem 2
If m,n are positive integers lisa realand m > nl, then

o a1 The2 r; or{

Z Z Z Z Z(k—‘r'n — Tl — _rzl—ﬁl)l(m)

Tm=21p-1=1rp_2=1 rp=1r;=

k(m+2n 1) k(n 1)
L
n(m +1D)(m+2)..(m+ 2n— 1?1 T -1y ((n nin- 1)

kl(n 2) k(z) k(l)
+C(n—2)j 7( _2)|ln—2 +--+c 2] (2)' lz +C l +CO]'

where c' s are obtained by solving n equations by putting k = (m + a)l + j
fora=n—-1,nn+1,..2n—2
Proof. The proof follows by )(11) and Theorem 1
The following theorem gives the formula for sum of (n — 1)times
partial sums (ie., partial sums of partial sums of ... partial sums of) for
products of p, (i = 1,2, ..., n) powers of m consecutive terms kP! (k — [)P2

(k= (m-— 1))pm of an arithmetic progression k, k — I,k — 21, ..., J,
k
wherej = k — [T] L.

Theorem 4
Lets! be the stirling numbers of the second kind, p;, p2, 3, -+ Pm-
are positive integers and k € [p,,l + j, ©), where p,, = p; + p, + :** + pm- Then,
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Tho1  Th-z r; or{

Z Z Z ZZ[ﬁ(k‘rnl‘rn—ll—“-—rzl—(t—1)1)“]

Tm=2Tp-1=1rp—2=1 1ry=1r1
p1 P2 P3 pm Pm-Xis

3D ID I N 11 B T

i1=0ip=0i3= im—1 r=1

5 k(r+n) kl(‘ﬂ_l)
_ m—1oPm—2is m—(r+ )7 N P
X (—=(m 1))l ls, (Hpm—trm (7. +1) * Cn-1); ((Tl —1)! l”_1>

kl(n—z) k(z) k(l)
+tCn-2)j (W) + -+ €2, TN 72 ONE + ¢y ( i ) + ¢y, (13)

where Z iy =iy +1i; + -+ + i, 4 and the constants c(, _1)j, C(n—2)j, -+, Coj are

given by solving the n equations obtained by putting k = (p,, +a)l +j for
a=n—1nn+1,..,2n—2 in (13)
Proof. From the Binomial Theorem and (4), we find
P2 P3 Pa pm Pm-Xig
kPt (k — 1yP2 (k — 20)3 .. (k — (m — 1)[)Pm = Z Z Z Z Z ( ) (p3) . ( ) (—1)i1(=2) .
i1=0i=0i3=0 ip—1 r= tm-1
(~m — Dy sPE T )
Now applying the inverse operator of the nkind and making the substitution
k= (py +a)l+jfora=n—-1,nn+1,..2n—2 in (14), we obtain the
required result.
The following corollary shows the formula for sum of partial sums for
products of p" powers of m consecutive terms k?1(k — [)P2 ... (k — (m — 1)[)Pm

k
of an arithmetic progression k, k — [,k — 21, ...,j,where j = k — [—] l.
Corollary 5.1f p,,, Y i, s, k and are as in Theorem 4,

[] []
[ﬂ(k—rnl—rn - —rzl—(t—l)l)ptl
o= 2 r1=

p2  P3 m pm Pm-Xis
=2, 2. 2.0, 2, () Jeveear.
i1=01ip=0i3= im—1 r=1 tm—1
oy kl(r+2) ¢k

_ —1))im-1 Pm—Als l pm—(r+2)>< o vy (15
( (m )) Sy () (T'+1)(T+2) + l +C0] ( )
where cy; and cy; are constants obtained by solving the two simultaneous
equations obtained by substituting k = (p,, + a)l +j fora = 1,2 in (15).
Proof. The proof follows by n = 2 in Theorem 4.

The following corollary shows the formula for sum of partial sums for
products of p" powers of m consecutive terms k?1 (k — [)P2 ... (k — (m — 1)[)Pm

k
of an arithmetic progression k,k — l,k — 21, ...,j,where j = k — [—] l.
Corollary 6. If p,,Xis,st,k and | are as in theorem 4,

s []-ra-re

ZZ Z [H("—” Tuoal = —Tzl—(t—l)l)pt]=

r3=2 1T2=1 r1=0
p2 P3 D4 Pm Pm-Xis

558 SIS ) () i e

i1=0i=0i3= im—1 r=1

. (r+3) c, k(z)
sf'“‘zl%l)”m‘“””( G >+ l

Do DG+, 2 T (10
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where ¢, ¢4; and cy; are constants obtained by solving the two simultaneous
equations obtained by substituting k = (p,, + a)l +j fora = 2,3,4 in (16).
Proof. The proof follows by n = 3 in Theorem 4.

APPLICATIONS

In this  section, we present  some examples  to illustrate  the main results.
The following example is an illustration of Corollary 5.
Examples 1

Formula for sum of partial sums of products of 15, 2" and3™ powers of three consecutiveterms (k(k —
L2k—2(30f APk ke~

k
k-2l ..,j,where j=k— [T]l is given by

-t

—_—
~=
—_—

M=
g

(k—tl—sl) (k—1—tl—sD)2(k — 21 — tl — sI)3 =

t=2 s=0
1
sk =D+ [k(7) (71 + )] + kO — 71+ H®]
7 7-1
!
+E[kl(5)—(7l+j),(5)]+ZZ(7Z+j—tl—sl)(7l+j—l—tl—sl)2
t=2 s=0

(71+j—2l—tl— sl)3
(@) {2(71 +j = sD(6L+j = sD?(5L+j —sD)® —

1
@+ = (714 NP] =g [BL+ D7)
s=1

56l2 [

(@ DP] =364 NP — AL+ DO) + s [EL+ DT — (74 ]

Solution: By taklng p1 = 1,p, = 2,p3 = 3, m = 3 in corollary 5, we find

[l -

®
_ _ ] — ] — _ _ _ 3t 4t
Z Z(k th=s1) (e — L= tl = sD*(k = 2L — tl = s1)° =+ =L
t=2 s=0 © )
kS LK k+c
3 10 o;°
Putting k = (71 + j)and k = (8L + j)in (17) we get
7 7—-t
ZZ(7l+j—tl—sl)(7l+j—tl—sl—l)2(7l+j—21—tl—sl)3:
t=2 s=0
NS TL+DD LN 7+ pP g+
56(2 6l 3 T 10 T T8
8 8-t
ZZ(SI+j—tl—sl)(8l+j—tl—sl—l)2(81+j—2l—tl—sl)3=
t=2 s=0
G RGN G ) R G0 ) R G B
5612 6l 3t 10 T o9

Hence, ¢, and ¢y are obtained by solving (18)and (19). now the proof
follows by substituting the values of ¢y, and ¢y, in 7).

In particular, taking k = 38 and ! = 3, we obtain
[(32)(29)%(26)* + (29)(26)*(23)® + -+ + (8)(5)*(2)*] + [(29)(26)*(23)* +
(26)(23)*(20)° + - + @2 + -+ (B)(5)*(2)°

1
= 2 1680 — (23)P] + [T ~ (23] +3 (B - (29¢] +
7 7= t
—O[(38)§5) — (239 + 22(23 — 3t—35) (20 — 3t — 3s)2 (17 — 3t — 35)°

t=2 s=0
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+(5) {Z[(B —35)(20 — 35)2(17 — 3s)%] — o1 [(26)(8) (23)P] - (26)(7) (23){] - (26)(6) (23)¥]
s=1

3
- 15126) - (23)§5>]}

= 1573644096
The following example illustrates corollary 6.

Example 2. Formula for sum of second partial sums of products of
2" and 3™ powers of two consecutive terms(k?(k — 1)3) of A.P.k,k — 1,

k
k-2l ..,j,where j=k— [T]”S

—
==
—
—
=

e[l

J-t-
Z k—tl—sl—rD)2(k—1—tl—sl—rl)® =

t:2$1
8 8 7 7 6 N (6
33613 “ (7l+1)§>]+3012 [k — (71+]),<)]+12l [k — 71+ )]
7 7-t
+3 = (7l+1)§5>]+ZZ(71+]—tl—sl—rl)(7l+]—2l—tl—sl)3
tZrO
k— (71 +
(M){ZZ(81+]—H—SD @l+j—1—tl—sl)?

t=2 s=

1

~Sagp @+ DT = (714 D] - 3012 [@L+ ) = (7L + 7]
1 . . .
“i (84~ 14T+ 55160+ DE — (74 D)

+W[k’(2) -1+ (W) 8L+ j)?” - 71+ )P

1
{;(81 +j—tD2Bl+j—tl—1)3— 33613 [(9L +])(8) (7l +j)l(8)] _ l2 (91 +])(7)) (7l +j)§7)] » [(9l

+ O — (714 H®] - = (9l+1)(5) —(71+HP] -2(- 33613 [@L+H® — (71+H®]

S CENOE (7l+1)§5))1 LD — (714 DO = 55181+ )
- (7 +,-),<5>)]}

solution: By taking p; = 2,p, = 3,n = 3, m = 2 in corollary 6, we find

[1] [il-e [f]-es

ZZ z (k—tl—sl—rD)?>(k—1—tl—sl—7l)3 =

t=2 s=0 r=0
kl(S) kl(7) kl(6) kl(S) k(z)

33612 7302 T 121 T 30 T4

+c. -+ Co; - (20)

il

putting k = (7L +j),k = (8l + j)and k = (9L + j) in (20), we obtain

7 7—-t7—t-—s 8)
(7L + )
_ _ _ 2 N _ _ 3 _
;2 El E_ (L= tl=sl=rD)? (7TL+j == tl = sl =rl)* = =+

T+ p? @ p® @ p® i p® i) 21
3012 121 30 T T oty T a1

8 8—t8—t—s

8l +j)®
ZZZ(81+]—tl—sl—rl)2(81+]—l_tl_sl_l)3 ( i +

33613
t=2s=1 r=0
@ @ G @D @)
3012 121 30 o ¢, Co;» (22)
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and
9 9t 9—t—s (8)
€l +])(
. 2 . 3 _ l
Z(9l+]—tl—sl—rl) Ol+j—-1l—-tl—sl—1]) = "33¢8
t=2s=1 1=0 ~(6) \(5) ~(2) .
Ol+)) Ol+)) Ol +)) Ol+ ) 9L+ ) N 23
3012 121 30 2112 47 o, (23)

Solving (21), (22) and (23), we can find Cz;, €1, and ¢,. Now, the proof
follows by substituting the values of ¢, , ¢;,and ¢, in (20).

In particular, taking k = 70 and [ = 4, we get
{[(58)2(54)° + (54)*(50)% + - + (6)*(2)®] + [(54)*(50)* + (50)*(46)*
+- 4 (6)*(2°} + {[(59)%(50)° + (50)%(46)° + - + (6)%(2)*] + [(50)*(46)°

+(46)%(42)° + -+ (6)*(2)° ]}+ +(6)?2(2)° =

[(70)5”) = B0 + 45

7 7-s

+30(4)2

[(70)“)

36y [70F — GOl

B0 +55 - 570 = B0

+ZZZ(71+}—tl—sl—rl) (TL+j—1—tl — sl — 1) + (10)

t=2s=1r=
8 8-t

{ZZ(SI+]—tl—sl)2(81+]—l—tl—sl)3

slr

- 5087 [(34)(7’) (30)¢”

2'l2

5
{Z(Bz b D28l 4 —tl— 1) —

30(4)2 [(38)(”) (30)”

336(4)3

_ i [(38)(6) _ (30)(6)

T36y7 |G — GO

516 - (30T - (305 - (0]}

[(70)) - BO)Y + 10)[3HY - 30)P]]

336047 [(38)5 — B0)P]

- i 538D - (30)5”

W [(34)(7)) (30){"

1
1 [<34>ff’> - (30>EP] - 55160 - G0}

= 9293238528

IV. CONCLUSION

We conclude that the theory, the results and the
applications obtained in this dissertation are derived using
the generalized difference operators, their inverses and
using the Stirling numbers of the first and second kinds.
Theory and applications of the solutions of the
generalized equations established in this dissertation,
which are not developed earlier are applicable to the area
in Numerical Methods.
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