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ABTRACT  
Herein, we propose a novel hybrid method for 

forecasting steel prices by modeling nonlinearity and time 

variations together to enhance forecasting adaptability. The 

multivariate empirical mode decomposition (MEMD)–

ensemble-EMD (EEMD) approach was employed for 

preprocessing to separate the nonlinear and time variation 

components of a hot-rolled coil (HRC) price return series, 

and a particle swarm optimization (PSO)-based least squares 

support vector regression (LSSVR) approach and a 

generalized autoregressive conditional heteroskedasticity 

(GARCH) model were applied to capture the nonlinear and 

time variation characteristics of steel returns, respectively. 

The empirical results revealed that compared with the 

traditional models, the proposed hybrid method yields 

superior forecasting performance for HRC returns. The 

evidence also suggested that in capturing the price dynamics 

of HRC during the COVID-19 pandemic period, the 

asymmetric GARCH model with MEMD–LSSVR 

outperformed not only standard GARCH models but also the 

EEMD-LSSVR models. The proposed MEMD–LSSVR–

GARCH model for steel price forecasting provides a useful 

decision support tool for steelmakers and consumers to 

evaluate steel price trends. 
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I. INTRODUCTION 
 

Steel is a material central to modern society, and 

the steel industry is considered a key infrastructure 

industry. Despite the continual development of new 

construction materials, steel remains widely used in 

numerous sectors, such as the construction, mechanical 

equipment, automotive, and other transportation sectors. 

Further, steel is and will continue to be crucial to the 

global energy supply, whether that energy generation is 

based on fossil fuels, nuclear technology, or renewable 

sources such as wind power. Historically, early and precise 

prediction of steel prices has been a critical issue for 

producers, traders, and steel product end-users. During the 

coronavirus-related shutdowns of early 2020, many steel 

mills halted production due to the fear of a deep recession. 

However, the demand for steel-based products such as 

grills and refrigerators quickly reemerged. Consequently, 

the benchmark price for hot-rolled steel increased to a high 

of US$1800/ton as global economies reopened in 2021. 

Prior to the pandemic, hot-rolled steel traded in the range 

of $500 to $800 per ton. After an initial price drop at the 

outset of the pandemic, steel prices increased rapidly from 

August 2020 as the rising demand far outweighed 

supply. The unprecedented price drop and rise in demand 

that have occurred over the past few years have caused 

steel price volatility, thereby making the accurate 

prediction of steel prices difficult. However, the early 

estimation of prices is critical in the steel industry. 

As with any commodity, supply and demand are 

the principal factors that determine steel prices. However, 

the price of steel is also determined by forecasted supply 

and demand, which can be more accurately predicted when 

more information is available. Since 2008, steel products, 

including hot-rolled coil (HRC), futures contracts have 

been traded on commodity exchange markets, including 

the Chicago Mercantile Exchange, Shanghai Futures 

Exchange, and London Metal Exchange. This suggests that 

steel has been financialized—although it remains a 

physical asset as well; nevertheless, forecasting financial 

assets is a challenging task. As indicated by Garcia, Irwin, 

and Smith (2015), future prices are difficult to predict 

because market imperfections are quickly discovered, 

exploited, and corrected by market traders and participants. 

Nonetheless, forecasting a financial time series such as that 

for the price of steel is a highly active research area, with 

applications spanning from hedging strategies to risk 

management to protecting against economic fluctuations. 

Although various studies on the steel industry (Ou, Cheng, 

Chen, and Perng, 2016; Mehmanpazir, Khalili-Damghani, 

and Hafezalkotob, 2019; Ma, 2021) have been undertaken, 

comprehensive investigations of steel prices are still 

lacking. 

Steel price movement in the commodity market is 

affected by a combination of economic and industrial 

trends, raw material and shipping costs, and economic 
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noise—these constitute the distinct features that emerge 

over various time horizons. Traditionally, determinant 

variables have been employed for the linear prediction of 

steel prices (Mancke, 1968; Kapl and Muller, 2010; 

Malanichev and Vorob’ev, 2011). However, some studies 

have characterized steel price returns on the basis of 

nonlinear behavior by using either econometric models or 

artificial neural networks and fuzzy approaches (Chou, 

2012; Kahraman and Unal, 2012; Chen, Li, and Yu, 2021). 

Therefore, steel price movement can be analyzed using 

technical tools (e.g., machine learning algorithms), 

econometric models, or a combination of these methods. 

Few studies, however, have combined econometric models 

and machine learning approaches to predict steel prices. In 

the present study, given the nonlinear and changeable 

characteristics of steel prices, a novel hybrid method of 

forecasting steel prices by modeling nonlinearity and time 

variations simultaneously is proposed. By combining two 

models, adaptability was enhanced, and distinct aspects of 

the underlying patterns of steel price return movement 

could be well captured. 

In this study, the proposed method for steel price 

forecasting is a hybrid of the multivariate empirical mode 

decomposition (MEMD), least squares support vector 

regression (LSSVR), and generalized autoregressive 

conditional heteroskedasticity (GARCH), models; the 

hybrid is based on the advantages of econometric models 

and machine learning algorithms for depicting the 

nonlinear, dynamic features of steel price returns. The 

MEMD model is widely employed to decompose steel 

price returns into a series of intrinsic mode functions 

(IMFs) and residuals, and the LSSVR method is used to 

forecast nonlinear components. The GARCH model 

(including asymmetric GARCH) is used to capture the 

time variation component more accurately. In the end, the 

sum of the forecasted values for all components yields the 

final forecasted results of steel price returns. 

 

II. RELATED FORECASTING 

LITERATURE 
 

The price fluctuations of a commodity such as 

steel are of interest because they affect the decision-

making of producers and consumers; hence, developing 

accurate price forecasts is crucial. Econometric 

specification models (Beck, 2001) provide valuable 

insights into the determinants of commodity price 

movements, but such models are not necessarily the best 

choice for forecasting purposes. Studies have demonstrated 

that the accuracy of forecasting commodity price volatility 

by using machine learning algorithms can be more precise 

than the accuracy of forecasting such volatility by using 

standard GARCH-type models (e.g., Fałdzinski et al., 

2021). However, in several other studies, asymmetric 

GARCH–based models exhibited the most accurate 

forecasting. Therefore, the results of empirical studies have 

been mixed. A hybrid modeling approach that integrates 

machine learning with econometric models is likely to 

outperform the models proposed in previous studies.   

2.1 Application of MEMD Algorithm in Forecasting  

Wu and Huang (2009) extended the EMD 

algorithm and proposed the ensemble EMD (EEMD) 

algorithm, which can be used to analyze sequences 

effectively and reduce the influence of mode mixing for 

the EMD algorithm. The EEMD algorithm is employed to 

decompose an original time series into several IMFs and a 

residual sequence. It is widely used in complex system 

analysis, and those results further validate the effectiveness 

of the EEMD method (Tang et al., 2015; Yu et al., 2016). 

MEMD is a new multiscale data-adaptive decomposition 

and analysis model for multivariate data. It extends the 

classic oscillation concept in the univariate EMD model to 

use multivariate joint oscillation and adopts a generalized 

rotational mode (Mandic et al., 2013; Park et al., 2013). 

Although the empirical results of EEMD and 

MEMD are favorable when compared with other energy 

and metal price forecasting methods, such as those for the 

forecasting of wind, port container throughput, and air 

travel demand (Wang et al., 2011; Hu et al., 2013; Xie et 

al., 2013; Yu et al., 2014; Zhang et al., 2015; He et al., 

2017), studies investigating applications of the MEMD 

algorithm in steel price forecasting remain scarce. 

2.2 Application of LSSVR Algorithm in Forecasting 

The LSSVR method, an improved version of 

SVR, has received considerable recent attention among 

prediction methods due to its fast computational speedand 

the LSSVR method’s use of the linear squares principle for 

the loss function instead of the quadratic programming 

employed in the SVR method. 

LSSVR has been widely used in oil price 

forecasting, port container throughput forecasting, air 

travel demand forecasting, and hydropower generation 

(Wang et al., 2011; Xie et al., 2013; Yu et al., 2014). To 

forecast foreign exchange rates, Lin et al. (2012) proposed 

the EMD–LSSVR model, which outperformed the EMD-

based autoregressive integrated moving average (EMD–

ARIMA), LSSVR, and ARIMA models. Moreover, Zhang 

et al. (2008) used EEMD to analyze fundamental features 

of petroleum price series over different time horizons and 

indicated that the decomposed terms can be introduced 

into the SVR to predict prices more precisely. 

2.3 Application of GARCH Model in Forecasting 

GARCH models, initially proposed by Bollerslev 

(1986) and Taylor (1986), have been applied successfully 

in modeling the volatility of variables in time series, with 

applications occurring primarily in the area of financial 

investments. After identifying an asymmetric relationship 

between conditional volatility and conditional mean value, 
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econometrists have focused on the design of models to 

explain this phenomenon. Thus, asymmetric GARCH 

models are employed to capture the asymmetric 

characteristics of volatility. The empirical evidence of 

Nelson (1991) and Glosten et al. 1989, 1993) indicates that 

asymmetric models outperform standard GARCH models 

in terms of forecasting volatility over shorter time 

horizons. 

 

III. FORECASTING METHODOLOGIES 

AND DATA 
 

3.1 EEMD and MEMD Algorithms 

MEMD, a popular method that is the extension of 

the EMD and EEMD algorithms, as demonstrated by its 

applications in many fields, such as texture analysis, 

finance, image processing, ocean engineering, and seismic 

research. EMD, first proposed by Huang et al. (1998), is a 

novel empirical analysis tool used for processing nonlinear 

and nonstationary datasets. The main idea of EMD is to 

decompose a nonlinear and nonstationary time series into a 

sum of several simple IMF components and one residue 

with individual intrinsic time-scale properties. 

Let (𝑡) be a given original steel return time series; the 

detailed steps of the EMD calculation can then be 

described as follows. 

Step 1. Find all the local extremes of the original steel 

return series (𝑡). 
Step 2. Calculate the upper envelope 𝑆up(𝑡), which can be 

derived by connecting all the local maxima by using cubic 

spline interpolation. Similarly, the lower envelope 𝑆low(𝑡) 
can be obtained, and the average envelope 𝐴(𝑡) can be 

calculated based on the upper and lower envelopes as 

follows: 
 

𝐴 𝑡  
 𝑆   𝑡  𝑆    𝑡  

 
 

 

Step 3. Calculate the first difference 𝑆1(𝑡) to obtain the 

oscillatory mode between the original series value 𝑆(𝑡) and 

the mean envelope 𝐴(𝑡) as follows: 
 

𝑆1(𝑡) = 𝑆(𝑡) − 𝐴(𝑡) 
 

Step 4. Check whether 𝑆1(𝑡) satisfies the two IMF 

requirements. If 𝑆1(𝑡) is an IMF, then 𝑆1(𝑡) is denoted as 

the first IMF 𝑄1(𝑡) and 𝑆(𝑡) is replaced with the residue 

𝐶1(𝑡) as follows:  
 

𝐶1(𝑡) = 𝑆(𝑡) − 𝑄1(𝑡) 
 

Otherwise, if 𝑆1(𝑡) is not an IMF, replace 𝑆(𝑡) 
with 𝐶1(𝑡) and repeat steps 2 and 3 until the termination 

criterion is satisfied. After the EMD calculation, the 

original time series value (𝑡) (input signal) can be 

decomposed and all the IMF components and a residue can 

be totaled. The given equation is as follows: 
 

𝑆 𝑡  ∑ 𝑄  𝑡  𝐶   𝑡 

 

   

 

 

where 𝑄𝑖(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is the IMF for a distinct 

decomposition and 𝐶𝑛(𝑡) is the residue after 𝑛IMFs are 

derived. This ensures each IMF is independent and 

specifically expresses the local characteristics of the 

original time series data. 

The EEMD method was developed by Wu and 

Huang (2009) to overcome the key drawback of EMD—

the mixing mode problem. EEMD involves an additional 

step of adding white noise, which can improve scaling and 

extract the actual signals (real IMFs) from data. EEMD is a 

completely localized and adaptive algorithm for stationary 

and nonstationary data (Zhang et al., 2009). Therefore, 

EEMD differs from EMD, which is based on the 

hypothesis that observations are composed of real 

sequences and white noise.  

For multivariate signals, however, the local 

maxima and minima cannot be defined directly, and the 

notion of an oscillatory mode defining a multivariate IMF 

is also complex (Rilling et al., 2007). This makes the 

MEMD model especially notable in the economics and 

finance fields. Similar to EMD, the output of MEMD 

ensures the enhanced identification of intrinsic oscillatory 

modes within a signal. Given a p-variate signal 

s(t),MEMD produces M multivariate IMFs as follows: 
 

𝑆 𝑡  ∑ 𝐶  𝑡    𝑡 

 

   

 

 

where cm(t) is the mth IMF of S(t) (also p variate) and r(t)is 

the p-variate residual. 

To address this problem, multiple p-dimensional 

envelopes are generated by taking signal projections along 

with various directions in p-dimensional space and 

subsequently interpolating their extrema (Rehman and 

Mandic, 2009). These envelopes are then averaged to 

obtain the local multivariate mean. 

3.2. LSSVR Algorithm 

LSSVR is adapted from SVR but has a more 

efficient calculation procedure. LSSVR is a type of SVM 

algorithm that is based on the regularization theory 

proposed by Suykens et al. (1999, 2002). This algorithm 

takes the least-squares linear system as the loss function 

and transforms classic quadratic programming 

optimization problems to solve linear equations; this 

involves markedly less computational complexity, greater 

calculation efficiency, faster processing, and lower 

learning difficulty. 
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The fundamental idea of LSSVR is to map the 

training set (y, x) into the high-dimensional feature space 

by using a nonlinear mapping function φ (·). Thereafter, 

linear regression is performed in the high-dimensional 

feature space. Additionally, LSSVR adopts equality 

constraints and a linear Karush–Kuhn–Tucker (KKT) 

system, which delivers more computational power to solve 

nonlinear problems. 

LSSVR can thus be formulated as follows:  
 

y(x) = 𝜔𝑇𝜑(𝑥) + 𝑞 
 

where 𝜑(𝑥) is the nonlinear mapping function, ω is a 

coefficient, and q is a deviation. Applying the principle of 

structural risk minimization can transform the regression 

problem into the following optimization problem:  
 

min (1/2) 𝜔𝑇𝜔 + (1/2) 𝛾∑𝑒𝑡
2 

s.t. 𝑦𝑡 = 𝜔 (𝑥𝑡) + q + 𝑒𝑡 
 

where 𝛾 is the penalty parameter and 𝑒𝑡 is the slack 

variable.  

Introducing the Lagrangian function and KKT 

conditions allows the original problem to be represented in 

the following form:  
 

y(x) = ∑𝜔𝑡𝐾(𝑥, 𝑥𝑡 ) + 𝑞 
 

where K(·) is the kernel function.  

3.3 Particle Swarm Optimization–Based LSSVR Method 

The modeling performance of LSSVR relies 

heavily on the model parameters. Therefore, the particle 

swarm optimization (PSO) algorithm, a key searching 

algorithm that involves collaborative searching of particle 

swarms, was employed in this research to obtain the 

optimal parameters. The PSO algorithm is an evolutional 

technique that is based on simulations of the flocking and 

swarming behaviors of birds and insects (Eberhart and 

Kennedy, 1995); it can efficiently identify optimal or near-

optimal solutions for a given problem. The PSO algorithm 

can select the parameters for LSSVR automatically 

without trial and error, thus ensuring the accuracy of 

parameter optimization. It is superior to other intelligent 

algorithms (e.g., genetic algorithms) in that it achieves 

faster convergence and requires fewer parameters to be set. 

 We define each particle as a potential solution to 

a problem in a d-dimensional search space; uiis the current 

position of the particle,  iis the current velocity,   is the 

previous position, and   is the optimal position among all 

the particles. The term w is the initial inertia weight, r1 and 

r2 are random numbers obeying a uniform distribution, and 

c1 and c2 are the dynamic nonlinear individual learning 

factor and the dynamic nonlinear population learning 

factor, respectively, in the tth iteration. 

The optimal position of particle i can then be 

computed using the following equations: 
 

  
       

 +       -  
 ) +        -  

 ) 

 

  
      

    
    

After acquiring the optimal model parameters in 

the learning process, the PSO–LSSVR model was 

constructed. In this research, the steps involved in the 

prediction algorithm PSO–LSSVR are as follows:  

Step 1. Determine the ranges of penalty coefficient C and 

the kernel parameter of the LSSVR model.  

Step 2. Initialize the PSO algorithm parameters by 

randomly initializing a particle to form a group of particles 

and randomly generating the initial velocity of the particles.  

Step 3. Use the LSSVR procedures to train the initialized 

particles, obtain individual model fit values, and update the 

global and individual particle optimal values.  

Step 4. Determine the termination condition. If the 

maximum number of iterations is reached, then stop; 

otherwise, produce a new group and repeat step 3 until the 

termination requirements are met. At this point, the 

individual particle in the group that has the lowest model 

fit value represents the optimal solution.  

Step 5. Use the optimal parameter penalty factor C and 

kernel parameter in the LSSVR procedures, and use a test 

sample to obtain predictions. 

3.4. Data and the Hybrid Approach 

In our study, we investigated the futures contracts 

of a selected steel commodity, namely HRC, which is a 

type of sheet product resembling a wound steel strip. The 

product is widely used in the construction, car 

manufacturing, and machine industries and is a key input 

in industrialization. HRC is generally the most frequently 

produced among the products of the world’s largest 

steelmakers. Moreover, China is the world’s largest 

producer, consumer, and exporter of HRCs, with an annual 

output of hundreds of millions of tons. Thus, the primary 

information sources regarding steel price trends are usually 

the large HRC markets such as the key HRC markets of 

China. In this study, Chinese HRC futures contracts were 

quoted at the Shanghai Futures Exchange, and the trading 

dataset was obtained from the Datastream database. The 

hybrid method proposed in this research was applied to the 

aforementioned HRC futures price returns. We analyzed 

data for the 8-year period from January 2014 through 

October 2021. Applying the hybrid method that is able to 

model both nonlinearity and time variations was an 

appropriate approach for HRC price forecasting. Initially, 

the daily observations from January 2014 through October 

2019 were used as the training samples, and those from 

November 2019 through October 2021 were considered 

the testing samples. From these, we determined the weekly 

HRC returns. We then used EEMD and MEMD to 

decompose the weekly HRC price return series into 

independent IMFs and one residual, which were defined as 

subseries (see Forecasting Results section).Once PSO–
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LSSVR was tuned, the same network was used to make 

predictions in the testing sample set. Training and 

validation sets were rolled forward at the end of each 

week, and the model was refitted. 

The steps of the proposed hybrid approach are 

summarized as follows. 

1. Decomposition: The original HRC steel price return 

series is first decomposed into finite IMFs and one 

residual series by using EEMD and MEMD. The 

original steel price return series can then be 

represented as follows:  

𝑆 𝑡  ∑   𝑡      𝑡 

 

   

 

where S(t)is the original steel price return series and 

Ii(t)and Rn(t) represent the IMFs and residual series, 

respectively.  

2. Observe the IMFs Ii(t)and residual series Rn(t). 

Thereafter, incorporate the nonlinear and time 

variation components extracted from the original steel 

return series. If the IMF exhibits the feature of time 

variation, then we may define it as Ij(t); otherwise, 

define it as Ni(t). Thus, the original steel return series 

can be defined as follows: 

𝑆 𝑡  ∑   𝑡  

 

   

∑    𝑡      𝑡 

 

     

 

 

 where Ni(t) and Ij(t) denote the nonlinear and time 

variation components extracted from the original steel 

return series, respectively. 

3. The PSO–LSSVR model is developed to forecast the 

future values of the nonlinear component and the 

residual series. The GARCH and other alternative 

models (asymmetric GARCH) are used to forecast the 

future values of the time variation component.  

4. The final forecasted steel price return series is 

obtained by combining the forecasted results of Ni(t), 

Ij(t),and Rn(t). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The procedures of steel price forecasting using the hybrid model 
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IV. FORECASTING RESULTS 
 

The descriptive statistics for HRC weekly returns 

are presented in Table 1. The calculated means of the 

returns were negative despite the prices of HRC increasing 

over the analyzed period. The absolute values of the 

minimum and maximum returns were relatively high. 

Additionally, a high standard deviation (2%) relative to a 

markedly lower mean return indicated that the 

observations were spread over a wider range of values, 

exhibiting relatively high volatility. Because the skewness 

of the HRC returns was between 0.5 and 1 (positively 

skewed), the data were moderately skewed. However, the 

kurtosis was greater than 3, which demonstrated that the 

dataset had heavier tails. Therefore, the HRC returns for 

our sample exhibit low skewness and high kurtosis. 

 

 

 

Table 1: Summary Statistics of Hot Rolled Coil Weekly Returns

Commodity Mean Min Max Md SD Var Skew Kurt 

Hot-Rolled 

Coil 

-0.06% -7% 8.96% 0.12% 2% 0.04% 0.778 3.764 

 

Note: Mean is the arithmetic mean, Min is minimum, Max is maximum, Md is median, SD is standard deviation, Var is 

variance, Skewis skewness, Kurt is excess kurtosis. The sample period is January 2014 to October 2021. 

 

Figure 2 depicts the decomposition results of the 

HRC return series obtained using EEMD; the time 

variation behavior of the training dataset was observed in 

IMF1, IMF2, and IMF3, which were the high-frequency 

components of the price series. Various alternative 

GARCH models were then used to forecast each of these 

subseries. The PSO–LSSVR model was applied for 

forecasting for the other subseries. We used a rolling 

window and applied the following procedure to estimate 

both the GARCH and PSO–LSSVR models. For the initial 

training sample (i.e., January 2014 through October 2019), 

we developed models and obtained forecasts for 1 week in 

advance. We consecutively added one new observation to 

the estimation sample while simultaneously removing the 

oldest observation. Then, on the basis of each estimation 

sample, we redeveloped the models and made forecasts. 

We repeated this procedure until we obtained forecasts for 

the 2-year period from November 2019 through October 

2021. The GARCH models considered were GARCH, 

GJR-GARCH, IGARCH, APGARCH, and C-GARCH. 

The parameters of these models were estimated using the 

quasi-maximum likelihood method. 

The forecasts were evaluated based on two 

primary measures: the mean absolute error (MAE) and 

root mean squared error (RMSE). The MAE is among the 

simplest loss functions used in forecasting studies; it 

measures the average magnitude of the errors in a set of 

forecasts without considering their direction. By contrast, 

the RMSE is a common means of measuring the quality of 

a model’s fit. MAE is calculated by taking the absolute 

difference between the predicted and actual values and 

averaging it across the dataset. RMSE is the square root of 

the average squared difference between the predicted and 

actual values. MAE and RMSE are expressed as follows: 

 

 𝐴  
 

𝑛
∑ 𝑦  

 

   

�̂�    𝑆  √
 

𝑛
∑ 𝑦  

 

   

�̂�    

where 𝑦  is actual value, �̂�  is predicted value, n is sample 

size. 
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Figure 2: The decomposition results of HR Creturn series by the EEMD method 

 

Table 2 presents the EEMD forecasting 

performance with the proposed hybrid approach (EEMD 

plus GARCH with LSSVR) when applied to the testing 

sample. Notably, the forecasting accuracy of Model 7 was 

superior to that of the other six models due to its lower 

MAE and RMSE values. This suggests that the CGARCH 

model, an asymmetric model, not only outperformed the 

other GARCH models but could also effectively capture 

the time variation volatility of HRC prices during the 

testing sample period. 

 

Table 2: Evaluation of the HRC Forecasts by the EEMD Method 

 

 

Model 

EEMD (Decomposition Calculation) 

GARCH 

 

 

 

 

(1) 

PSO-

LSSVR 

 

 

 

(2) 

GARCH 

+ 

PSO-

LSSVM 

 

(3) 

IGARCH 

+ 

PSO-

LSSVM 

 

(4) 

GJR-

GARCH 

+ 

PSO-

LSSVM 

(5) 

APGARCH 

+ 

PSO-

LSSVM 

 

(6) 

CGARCH 

+ 

PSO-

LSSVM 

 

(7) 

MAE 3.2058% 3.4561% 2.6111% 2.6100% 2.6231% 2.9759% 2.6063% 

RMSE 3.9862% 4.2127% 3.3753% 3.3734% 3.3938% 4.0177% 3.3711% 
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We then developed the dataset for the empirical 

study of MEMD. To evaluate the performance of the 

proposed MEMD model against the benchmark models of 

EEMD (Table 2), we selected the market price data of the 

major raw materials of HRC, iron ore, and cooking coal. 

These market price variables are widely recognized as the 

determinants of HRC manufacturing costs and thus can be 

treated as supply-based forecasting factors. The data 

source for thesevariables was the DataStream database. As 

in Figure 3, the decomposed IMFs obtained using MEMD 

varied across more scales, exhibiting distinct behavioral 

and statistical characteristics that were even more obvious 

than those in the EEMD results presented in Figure 2. We 

then used the various GARCH models to forecast the high-

frequency IMFs, from IMF1 to IMF4, and the PSO–

LSSVR model was employed to forecast the other 

nonlinear IMFs. As detailed in Table 3, the forecast errors 

of the asymmetric GARCH model (Model 6) were not only 

lower than those of the other models listed in Table 3 but 

were also noticeably lower than those of all the models 

listed in Table 2. 

 
Figure 3: The decomposition results of HR Creturn series by the MEMD method 
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Table 3: Evaluation of the HRC Forecasts by the MEMD Method 

 

 

Model 

MEMD (Decomposition Calculation) 

GARCH 

 

 

 

 

(1) 

PSO-

LSSVR 

 

 

 

(2) 

GARCH 

+ 

PSO-

LSSVM 

 

(3) 

IGARCH 

+ 

PSO-

LSSVM 

 

(4) 

GJR-

GARCH 

+ 

PSO-

LSSVM 

(5) 

APGARCH 

+ 

PSO-

LSSVM 

 

(6) 

CGARCH 

+ 

PSO-

LSSVM 

 

(7) 

MAE 2.1965% 2.5594% 1.8730% 1.8729% 1.8733% 1.8515% 1.9305% 

RMSE 2.7354% 3.1880% 2.4230% 2.4243% 2.4236% 2.3991% 2.5358% 

 

V. CONCLUSION 
 

For application in the context involving the 

complexity of steel price movement and the uncertainty of 

forecasting during the COVID-19 pandemic period, we 

proposed a new hybrid method for HRC forecasting that 

considers both the nonlinearity and time variation 

dynamics of steel price movement by using an extension of 

EMD. This method is noteworthy for several reasons. 

First, the MEMD–EEMD approach for preprocessing was 

employed in this study to separate the nonlinear and time 

variation components of the HRC price return series, 

which was beneficial to model the distinct components of 

steel prices and yielded excellent forecasting accuracy. 

Second, the PSO–LSSVR approach is a popular machine 

learning technique capable of effectively capturing the 

nonlinear characteristics of steel return movement, and 

GARCH models are standard tools applied to capture the 

time variation characteristics of steel returns. 

The empirical results demonstrate that compared 

with traditional models, the proposed hybrid method yields 

superior forecasting performance for HRC returns. The 

evidence also suggests that the asymmetric GARCH model 

with MEMD–LSSVR outperformed not only the standard 

GARCH models but also the EEMD–LSSVR models in 

capturing the nonlinear and time variation components of 

HRC prices during the testing sample period. Hence, the 

proposed MEMD–LSSVR–GARCH model for steel price 

forecasting provides a useful decision support tool for 

steelmakers and consumers to evaluate steel price trends 

and effectively measure extreme risk evolution dynamics 

such as the risk of COVID-19. 

This study used the hybrid method to forecast 

steel prices on the basis of historical data. However, prices 

are ultimately determined not only by the quantitative 

results from the hybrid method but also by some sudden 

and unexpected events that are difficult to quantify. For 

example, the unilaterally imposed new tariffs on steel 

products suddenly announced by the US during 2018 

substantially affected global steel prices. We may further 

consider the alternative approach by simultaneously 

incorporating qualitative factors and combining the 

quantitative and qualitative results to further enhance the 

approach’s forecasting accuracy. 

 

REFERENCES 
 

[1] Beck, S. (2001). Autoregressive conditional 

heteroscedasticity in commodity spot prices. Journal of 

Applied Econometrics, 16(2), 115–32. Available at: 

https://www.jstor.org/stable/2678513. 

[2] Bollerslev, T. (1986). Generalized autoregressive 

conditional heteroskedasticity. Journal of Econometrics, 

31(3), 307-327. Available at: https://doi.org/10.1016/0304-

4076(86)90063-1 

[3] Chen, T., Li, W. & Yu, S. (2021). On 

the price volatility of steel futures and its influencing 

factors in China. Accounting, 7, 771-780. Available at: 

https://doi.org/10.5267/j.ac.2021.2.007 

[4] Chou, M. (2012). Prediction of Asian steel price index 

using fuzzy time series. 3
rd

 International Conference on 

Innovations in Bio-Inspired Computing and Applications, 

185-188. Available at: 

https://doi.org/10.1109/IBICA.2012.26. 

[5] Eberhart, R. C. & Kennedy, J. A. (1995). A new 

optimizer using particle swarm theory. Proceedings of the 

Sixth International Symposium on Micro Machine and 

Human Science, Nagoya, Japan, pp. 39-43. Available at: 

https://ieeexplore.ieee.org/document/494215. 

[6] Fałdzinski, M., Fiszeder, P., & Orzeszko, W. (2021). 

Forecasting volatility of energy commodities: comparison 

of garch models with support vector regression. Energies, 

14(1), 1-18. Available at: 

https://doi.org/10.3390/en14010006. 

[7] Garcia, P., Irwin, S. H & Smith, A. (2015). Futures 

market failure?. American Journal of Agricultural 

Economics, 97(1), 40–64.  Available at: 

https://doi.org/10.1093/ajae/aau067. 

[8] Glosten, L. (1989). Insider trading, liquidity, and the 

role of the monopolist specialist. Journal of 

Business, 62(2), 211–235. Available at: 

https://www.jstor.org/stable/2353227. 

[9] Glosten, L., Jagannathan, R. & Runkle, D. (1993). 

Relationship between the expected value and volatility of 



International Journal of Engineering and Management Research                e-ISSN: 2250-0758  |  p-ISSN: 2394-6962                                                                                                                                    

Volume-12, Issue-1 (February 2022) 

www.ijemr.net                                                                                                      https://doi.org/10.31033/ijemr.12.1.5 

 

   39 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

 

the nominal excess returns on stocks. Journal of Finance, 

48(5), 1779-1802. Available at: 

https://doi.org/10.1111/j.1540-6261.1993.tb05128.x. 

[10] He, K., Chen, Y., Tso & G. K.F. (2017). Price 

forecasting in the precious metal market: A multivariate 

EMD denoising approach. Resources Policy, 54, 9-24. 

Available at: 

https://doi.org/10.1016/j.resourpol.2017.08.006. 

[11] Hu, J., Wang, J. & Zeng, G. (2013). A hybrid 

forecasting approach applied to wind speed time series. 

Renewable Energy, 60, 185-194. Available at: 

https://doi.org/10.1016/j.renene.2013.05.012 

[12] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, 

H. H., Zheng, Q., Yen, N., Tung, C. C. & Liu, H. H. 

(1998). The empirical mode decomposition and the Hilbert 

spectrum for nonlinear and non-stationary time series 

analysis. Proceedings of the Royal Society of London 

Series A: Mathematical, Physical and Engineering 

Sciences, 454(1971), 903–995. Available at: 

https://doi.org/10.1098/rspa.1998.0193. 

[13] Kahraman, E. & Unal, G. (2012). Steel price 

modelling with levy process. International Journal of 

Economics and Finance, 4(2), 101-110. Available at: 

https://www.academia.edu/28291801/Steel_Price_Modelli

ng_with_Levy_Process. 

[14] Kapel, A. & Muller, W. G. (2010). Prediction of steel 

prices: A comparison between a conventional regression 

model and MSSA. Statistics and Its Interface, 3, 369-375. 

Available at: 

https://www.intlpress.com/site/pub/files/_fulltext/journals/

sii/2010/0003/0003/SII-2010-0003-0003-a010.pdf. 

[15] Ma, Y. (2021). Dynamic spillovers and dependencies 

between iron ore prices, industry bond yields, 

and steel prices. Resources Policy. 74, 102430. Available 

at: https://doi.org/10.1016/j.resourpol.2021.102430. 

[16] Mancke, R. (1968). The determinants of steel prices 

in the U.S.: 1947-65. Journal of Industrial Economics, 

16(2), 147-160. Available at: 

https://doi.org/10.2307/2097798. 

[17] Mandic, D.P., Rehman, N.U., Wu, Z.H. & Huang, 

N.E. (2013). Empirical mode decomposition-based time-

frequency analysis of multivariate signals: the power of 

adaptive data analysis. IEEE Signal Process. Mag., 30(6), 

74–86. Available at: 

https://doi.org/10.1109/MSP.2013.2267931. 

[18] Mehmanpazir, F., Khalili-Damghani, K., & 

Hafezalkotob, A. (2019). Modeling steel supply and 

demand functions using logarithmic multiple regression 

analysis (case study: Steel industry in Iran). Resources 

Policy, 63, 101409. Available at: 

https://doi.org/10.1016/j.resourpol.2019.101409. 

[19] Nelson, D. B. (1991). Conditional heteroskedasticity 

in asset returns: A new approach. Econometrica, 59(2), 

347-370. Available at: https://doi.org/10.2307/2938260 

[20] Ou, T., Cheng, C., Chen, P. & Perng, C. (2016). 

Dynamic cost forecasting model based on extreme learning 

machine - A case study in steel plant. Computers & 

Industrial Engineering, 101, 544-553. Available at: 

https://doi.org/10.1016/j.cie.2016.09.012. 

[21] Park, C., Looney, D., Rehman, N.U., Ahrabian, A., & 

Mandic, D.P. (2013). Classification of motor imagery bci 

using multivariate empirical mode decomposition. IEEE 

Trans. Neural Syst. Rehabil. Eng., 21(1), 10–22. Available 

at: https://doi.org/10.1109/TNSRE.2012.2229296 

[22] Rehman, N. & Mandic, D. P. (2010). Multivariate 

empirical mode decomposition. Proceedings of the Royal 

Society of London Series A: Mathematical, Physical and 

Engineering Sciences., 466(2117), 1291-1302. Available 

at: https://doi.org/10.1098/rspa.2009.0502. 

[23] Rilling, G., Flandrin, P., Gonçalves, P. & Lilly, J. M. 

(2007). Bivariate empirical mode decomposition. IEEE 

Signal Processing Letter. 14(12), 936-939. Available at: 

https://doi.org/10.1109/LSP.2007.904710. 

[24] Suykens, J.A.K. & Vandewalle, J. (1999). Least 

squares support vector machine classifiers. Neural 

Processing Letters, 9(3), 293-300. Available at: 

https://link.springer.com/article/10.1023/A:101862860974

2. 

[25] Suykens, J.A.K. & Vandewalle, J. (2002). Multiclass 

least squares support vector machines. Proceedings of the 

International Joint Conference on Neural Networks 

(IJCNN 99), Washington, DC, pp. 900–903. Available at: 

https://doi.org/10.1109/IJCNN.1999.831072. 

[26] Tang, L., Dai, W., Yu, L. & Wang, S. (2015). A novel 

CEEMD-based EELM ensemble learning paradigm for 

crude oil price forecasting. International Journal of 

Information Technology Decision Making, 14(01), 141-

169. Available at: 

https://doi.org/10.1142/S0219622015400015. 

[27] Taylor, S. J. (1986). Forecasting the volatility of 

currency exchange rates. International Journal of 

Forecasting, 3(1), 159-170. Available at: 

https://doi.org/10.1016/0169-2070(87)90085-9. 

[28] Wang, S., Yu, L., Tang, L., & Wang, S. (2011). A 

novel seasonal decomposition based least squares support 

vector regression ensemble learning approach for 

hydropower consumption forecasting in China. Energy, 

36(11), 6542-6554. Available at: 

https://doi.org/10.1016/j.energy.2011.09.010. 

[29] Wu, Z. & Huang, N. (2009). Ensemble empirical 

mode decomposition: a noise-assisted data analysis 

method. Adv. Adapt. Data Anal., 1(1), 1–41. Available at: 

https://doi.org/10.1142/S1793536909000047. 

[30] Xie, G., Wang, S., Zhao, Y. & Lai, K. K. (2013). 

Hybrid approaches based on LSSVR model for container 

throughput forecasting: A comparative study. Applied Soft 

Computing, 13(5), 2232–2241. Available at: 

https://doi.org/10.1016/j.asoc.2013.02.002. 



International Journal of Engineering and Management Research                e-ISSN: 2250-0758  |  p-ISSN: 2394-6962                                                                                                                                    

Volume-12, Issue-1 (February 2022) 

www.ijemr.net                                                                                                      https://doi.org/10.31033/ijemr.12.1.5 

 

   40 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

 

[31] Yu, H., Huang, J., Li, W., & Feng, G., (2014). 

Development of the analogue-dynamical method for error 

correction of numerical forecasts. Journal of 

Meteorological Research, 28(5), 934–947. Available at: 

https://doi.org/10.1007/s13351-014-4077-4. 

[32] Yu, L., Dai, W. & Tang, L. (2016). A novel 

decomposition ensemble model with extended extreme 

learning machine for crude oil price forecasting. 

Engineering Applications of Artificial Intelligence, 47, 

110-121. Available at: 

https://doi.org/10.1016/j.engappai.2015.04.016. 

[33] Zhang, J., Zhang, Y. & Zhang, L. (2015). A novel 

hybrid method for crude oil price forecasting. Energy 

Economics, 49, 649–659. Available at: 

https://doi.org/10.1016/j.eneco.2015.02.018. 

[34] Zhang, X, Lai, K. K, & Wang, S. (2009). Did 

speculative activities contribute to high crude oil prices 

during 1993 to 2008? Journal of Systems Science and 

Complexity, 22(4), 636-646. Available at: 

http://sysmath.com/jssc/EN/Y2009/V22/I4/636. 

 
 

 
 
 


