
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 5 This work is licensed under Creative Commons Attribution 4.0 International License.

Simulation of BRKSS Architecture for Data Warehouse Employing

Shared Nothing Clustering

Bikramjit Pal
1
 and Mallika De

2

1
Assistant Professor, Department of Computer Science and Engineering, JIS University, Kolkata, West Bengal, INDIA

2
Retired SSO (Professor Rank), Department of Engineering and Technological Studies, University of Kalyani, Kalyani, West

Bengal, INDIA

1
Corresponding Author: biku_paul@rediffmail.com

ABSTRACT
The BRKSS Architecture is based upon shared

nothing clustering that can scale-up to a large number of

computers, increase their speed and maintain the work load.

The architecture comprises of a console along with a CPU that

also acts as a buffer and stores information based on the

processing of transactions, when a batch enters into the

system. This console is connected to a switch (p-ports) which is

again connected to the c-number of clusters through their

respective hubs. The architecture can be used for personal

databases and for online databases like cloud through router.

This architecture uses the concept of load balancing by

moving the transaction among various nodes within the

clusters so that the overhead of a particular node can be

minimised. In this paper we have simulated the working of

BRKSS architecture using JDK 1.7 with Net beans 8.0.2. We

compared the result of performance parameters sch as

turnaround time, throughput and waiting time with existing

hierarchical clustering model.

Keywords-- BRKSS Architecture, Shared Nothing

Clustering, Buffer, Cloud, Router, Switch, Hubs, Load

Balancing, Databases, Turnaround Time, Throughput,

Waiting Time, Ports

I. INTRODUCTION TO BRKSS

ARCHITECTURE

A substantial amount of work has been done to

enhance the performance of data warehouses in many

different ways. In this paper, an architecture named as

BRKSS Architecture [1] is simulated, which is based upon

shared nothing clustering that can scale-up to a large

number of computers, increase their speed and maintain the

work load. The architecture comprises of a console along

with a CPU that also acts as a buffer and stores information

based on the processing of transactions, when a batch enters

into the system. This console is connected to a switch (p-

ports) which is again connected to the c-number of clusters

through their respective hubs. The architecture can be used

for personal databases and for online databases like cloud

through router. As shown in Figure–1, the BRKSS

Architecture comprises of multiple nodes connected by a

high speed LAN. Apiece node has its own Processor (P),

Memory (M) and Disk (D).

Fig. 1. BRKSS Architecture

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 6 This work is licensed under Creative Commons Attribution 4.0 International License.

Maximum Possibility of Clusters and Nodes

Here, the number of clusters formed and the

number of nodes depend upon the number of ports in the

switch. Two ports of the switch will be used for connecting

with the console and the router. Suppose that‘d’ is the

number of nodes in each cluster. In Table–1, the table gives

an idea about the maximum number of clusters that could

be formed. Here, up to 64 port switch have been shown

which could be increased based on how much large is the

data warehouse.

II. PROPOSED ALGORITHM

To overcome the limitations of load balancing in

shared nothing clustering Inter-query Parallelism has been

implemented in the proposed algorithm where many diverse

queries or transactions are executed in parallel with one

another on many processors. This will not only increase the

throughput but will also scale up the system.

The steps of the algorithm are stated below:

Step–1 : Consider the number of transactions entering into the system in a batch mode.

[Suppose ‘m’ numbers of transactions are there in a batch]

Step–2: Check the number of clusters.

[Suppose ‘c’ be the number of clusters]

Step–3: Calculate the maximum value for each cluster (maxc) and node (maxn).

maxc = m/c

maxn = maxc /d

Where, maxc = 0 and maxn = 0 initially and d is the number of nodes in a cluster.

Step–4 : Distribute all the transactions evenly in the cluster based upon the maxc value and in the nodes based upon maxn

value.

Node Based

Step–5 : Now, calculate maxq = maxn /10

Where, maxq is the number of transactions that will enter into the MLFQ apiece time for execution and also calculate remn =

maxn – maxq for apiece node

Where, remn is the remaining number of transactions of a node.

Step–6 : Now for Node based Load Balancing, perform MLFQ Scheduling in apiece node.

Step–6 (a) : Allocate a ready queue to the processor of all the nodes and split the ready queue into ‘q’ number of queues.

Step–6 (b) : Put highest priority to q0 as q0 is the first queue and lowest priority to qn as qn is the last queue.

Step–6 (c) : Perform Round Robin Scheduling from q0 to qn-1 and FCFS in qn.

Step–6 (d) : Follow the MLFQ rules while performing the scheduling.

Considering two jobs A and B entering into the queue, apply the following rules:

Rule–1 : If Priority (A) > Priority (B), A will run (B doesn’t).

Rule–2 : If Priority (A) = Priority (B), A and B both run in RRS.

Rule–3 : When a job enters the system, it is placed at the highest priority, that is, the topmost queue.

Rule–4 : Once a job uses up its time allotment at a given level (regardless of how many times it has given up the

CPU), its priority is reduced, that is, it moves down one queue. This is called the Gaming Tolerance.

Rule–5 : After some time period S, move all the jobs in the system to the topmost queue. This is also known as

Priority Boost.

The above rules are applicable for a transaction or a query as well.

Step–6 (e) : At the end of apiece transaction, take up a new one from remn.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 7 This work is licensed under Creative Commons Attribution 4.0 International License.

Step–6 (f) : After time interval tz, status regarding the number of executed transactions and the remaining transactions will be

send to the buffer from apiece node of a cluster.

Step–7 : If value of remn does not become 0 within time tz, perform Node Based Load Balancing through Push Migration

approach.

Step–7 (a) : After receiving the status, check in the buffer.

 If remn = maxn / 2 in all the nodes, then situation is stable, continue with the execution and move to Step–9.

 If remn > maxn / 2 in all the nodes, then give them more time to reach the stable situation and then move to Step–9.

 If remn = maxn / 2 in half of the nodes and remn > maxn / 2 in other half, then give some time for execution so that

most of the nodes would either reach to remn < maxn / 2 or remn = maxn / 2. Then move to Step–9.

 If in most of the nodes remn is much less than maxn / 2 and in a few nodes remn = maxn / 2, then continue with the

execution and after that move to Step–9.

 If remn is much less than maxn / 2 in maximum nodes and in some nodes remn > maxn / 2, then start performing load

balancing.

Step–7 (b) : When condition 7 (a) (v) occurs in the node(s), then send a signal to the console through switch.

Step–7 (c) : Console in return will send an instruction to the node(s) to submit the remaining transactions remn.

Step–7 (d) : Redistribute remn into other nodes, depending upon the condition: remn < = maxn / 2

Step–8 : Continue Step–7(a) to Step–7 (d) until maxc gets executed.

Step–9 : With the end of all the transactions, again a new maxc will enter and repeat the above steps. Cluster Based

If after ty time, the console does not get any information regarding a particular cluster, then it will assume that a fail

over has occurred in the cluster. Then the console will perform cluster based load balancing to shift the load of the fail over

cluster to the rest of the active clusters.

Step–10 : After time interval ‘t y’, console will check the executed transactions maxe and the remaining transactions remc for

apiece cluster and a copy of remc transaction will be send to the buffer.

remc = maxc – maxe

Step–11 : Perform Cluster Based Load Balancing through Push Migration approach when cluster fail over will take place.

Step–11 (a) : After time ty, check in the buffer.

 If remc = maxc / 2 in all the active clusters, then situation is stable, continue with the execution and wait for condition

11 (a) (v) to occur.

 If remc > maxc / 2 in all the active clusters, then give them more time to reach the stable situation and wait for

condition 11 (a) (v) to occur.

 If remc = maxc / 2 in half of the active clusters and remc > maxc / 2 in other half, then give some time for execution so

that most of the clusters will either reach to remc < maxc / 2 or remc = maxc / 2 and wait for condition 11 (a) (v) to

occur.

 If in most of the active clusters remc is much less than maxc / 2 and in a few active cluster remc = maxc / 2, then

continue with the execution and wait for condition 11(a) (v) to occur.

 If remc is much less than maxc / 2 in all the active clusters, then performs load balancing.

Step–11 (b): Redistribute remc of the fail over cluster into the other active clusters that would satisfy the condition remc < =

maxc / 2 in the active clusters.

Step–12 : Continue Step–11 (a) and Step–11 (b) until m gets executed.

Step–13 : At the end of all the transactions, again a new batch will enter and repeat the above steps.

Example: Suppose the number of transactions (m) in one batch is 1, 80, 000, number of clusters (c) = 3 and number of nodes

in apiece cluster (d) = 4.

 Then,

 maxc = (1,80,000/3) = 60,000

 maxn = (60,000/4) = 15,000

The stable condition for apiece node is given by:

maxn /2 = 7500

maxq = maxn /10 = 1500

Node Based Load Balancing

Number of transactions entering into the MLFQ will be either maxq or multiplicand of maxq like:

1500 * 1 = 1500

1500 * 2 = 3000

1500 * 3 = 4500

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 8 This work is licensed under Creative Commons Attribution 4.0 International License.

1500 * 4 = 6000

At apiece tz interval, a status about the nodes will

be send to the console. The console will get information

about the remaining transactions of apiece node (remn) and

will decide whether continuous execution or load balancing

is required or not.

Initially,

After third Iteration in d1 and d2, remn is much

less than their maxn / 2 and in d4, remn is stable, but in d3,

remn > maxn / 2, so, Node Based Load Balancing is

performed. Here, 1,500 transactions would be taken away

from d3, making it stable and then putting that load into

either d1 or d2.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 9 This work is licensed under Creative Commons Attribution 4.0 International License.

While performing the above Iterations, a status

about all the nodes and their clusters would go to the

console and it will get updated on a regular basis.

Cluster Based Load Balancing

The console will get information in the time

interval ty about the executed number of transactions, that

is, maxe and a copy of all the remaining transactions remc.

So, when fail over of any cluster occurs, then the console

will send the unexecuted copy of transactions of the fail

over cluster to the other clusters.

Initially,

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 10 This work is licensed under Creative Commons Attribution 4.0 International License.

At the end of ty1 interval, console will have the

status of maxe and a copy of remc within it, till ty2 execution

ends successfully. After that it will hold a copy of remc and

status of maxe till ty3 execution ends successfully.

In ty2, a fail over occurs and the console that is

holding the value of remc from ty1 interval will distribute it

to the other active clusters until they themselves come to a

value much less than maxc / 2.

III. SIMULATION OF THE

ALGORITHM AND RESULT ANALYSIS

The BRKSS algorithm has been simulated by

using JDK 1.7 with Netbeans 8.0.2 and the database has

been maintained by MySQL. The algorithm takes the

following user inputs: number of cluster, number of nodes,

user queries which may be numerous at a particular time

period. User queries are the transaction that determines the

performance of a DW. The output is obtained for

Turnaround Time, Waiting Time and Throughput for a

given set of inputs and the result is compared with existing

pseudo mesh schema.

I have discussed the results for three cases, which

are shown in Table 3.1, Table 3.2 and Table 3.3. Also, the

comparative result analysis of the proposed and existing

hierarchical clustering model is displayed graphically.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 11 This work is licensed under Creative Commons Attribution 4.0 International License.

Graphical Representation

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 12 This work is licensed under Creative Commons Attribution 4.0 International License.

Comparison with Existing Model

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 13 This work is licensed under Creative Commons Attribution 4.0 International License.

Graphical Representation

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 14 This work is licensed under Creative Commons Attribution 4.0 International License.

Comparison with Existing Model

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 15 This work is licensed under Creative Commons Attribution 4.0 International License.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 16 This work is licensed under Creative Commons Attribution 4.0 International License.

Graphical Representation

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 17 This work is licensed under Creative Commons Attribution 4.0 International License.

Comparison with Existing Model

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume- 9, Issue- 1, (February 2019)

www.ijemr.net https://doi.org/10.31033/ijemr.9.1.1

 18 This work is licensed under Creative Commons Attribution 4.0 International License.

As discussed, this architecture is based upon

shared nothing clustering that can scale-up to a large

number of computers, increase their speed and maintain the

workload. To support it the proposed algorithm has been

simulated and the results shown that the performance of

BRKSS is better than the existing algorithm.

IV. CONCLUSION

The simulation of BRKSS algorithm has given

positive results in its favour when it is compared with

existing hierarchical clustering algorithm in terms of

turnaround time, throughput and waiting time. Also, the

results are consistent for different permutations and

combinations of nodes and clusters.

REFERENCES

[1] Pal Bikramjit, Chowdhury Rajdeep, Verma Kumar

Gaurav, Dasgupta Saswata, & Dutta Shubham. (2016).

Proposed BRKSS architecture for performance

enhancement of data warehouse employing shared nothing

clustering. International Science Press, 9(21), 111 – 121.

[2] Lee, S. (2011). Shared-nothing vs. shared-disk cloud

database architecture. International Journal of Energy,

Information and Communications, 2(4), 211-216.

[3] Popeanga, J. (2014). Shared-nothing’ cloud data

warehouse architecture. Database Systems Journal, V(4), 3-

11.

[4] Müseler, T. (2012). A survey of shared-nothing parallel

database management systems [Comparison between

teradata, greenplum and netezza implementation].

Available at:

https://pdfs.semanticscholar.org/0365/e61fbf06872334f806

3ff03fbe1a260f210c.pdf?_ga=2.38538275.1267149839.154

9360061-719258772.1545998512.

[5] De Witt, D., J., & Gray, J. (1991). Parallel database

systems: The future of database processing or a passing

fad?. Available at:

https://jimgray.azurewebsites.net/papers/CacmParallelDB.p

df.

[6] Furtado, P. (2009). A survey on parallel and distributed

data warehouses. IGI Publishing, 5(2), 57-77.

[7] Minhas, U., F., Lomet, D., & Thekkath, C., A. (2011).

Chimera: Data sharing flexibility, shared nothing

simplicity. IDEAS, Springer Verlag.

[8] Datta, A., Moon, B., & Thomas, H. (1998). A case for

parallelism in data warehousing and OLAP. Proceedings of

the 9th International Conference on Database and Expert

Systems Applications.

[9] DeWitt, D., J., & Gray, J. (1992). Parallel database

systems: The future of high performance database systems.

Communication of the ACM, 35(6), 85–98.

[10] Ezeife, C., I. & Barker, K. (1995). A comprehensive

approach to horizontal class fragmentation in a distributed

object based system. Distributed and Parallel Databases, 1,

247–272.

[11] Ezeife, C. I. (1998). A partition-selection scheme for

warehouse aggregate views. International Conference of

Computing and Information, Manitoba, Canada.

[12] Jurgens, M. & Lenz, H–J. (1999). Tree based indexes

vs. bitmap indexes: A performance study. Available at:

https://www.researchgate.net/publication/220841960_Tree_

Based_Indexes_vs_Bitmap_Indexes_A_Performance_Stud

y.

[13] Kimball, R. (1996). The data warehouse toolkit. (3
rd

ed.). Wiley and Sons, Inc. Available at:

http://www.essai.rnu.tn/Ebook/Informatique/The%20Data

%20Warehouse%20Toolkit,%203rd%20Edition.pdf.

[14] Patel, A., & Patel, J. M. (2102). Data modeling

techniques for data warehouse. International Journal of

Multidisciplinary Research, 2(2), 240–246.

[15] Farhan, M., S., Marie, M., E., El-Fangary, L., M., &

Helmy, Y., K. (2011). An integrated conceptual model for

temporal data warehouse security. Computer and

Information Science, 4(4), 46–57.

[16] Eder, J. & Koncilia, C. (2001). Changes of dimension

data in temporal data warehouses. Proceedings of Third

International Conference on Data Warehousing and

Knowledge Discovery, Munich, Germany, LNCS, Springer,

284–293.

[17] Golfarelli, M., Maio, D., & Rizzi, S. (1998). The

dimensional fact model: A conceptual model for data

warehouses. International Journal of Cooperative

Information Systems, 7(2-3), 215–247.

[18] Golfarelli, M. & Rizzi, S. (1998). A methodological

framework for data warehouse design. Proceedings of ACM

First International Workshop on Data Warehousing and

OLAP, DOLAP, Washington, 3–9.

[19] Bernardino, J. & Madeira, H. (2019). Data

warehousing and OLAP: Improving query performance

using distributed computing. Available at:

https://www.academia.edu/4241918/Data_Warehousing_an

d_OLAP_Improving_Query_Performance_Using_Distribut

ed_Computing.

[20] Albrecht, J., Gunzel, H., & Lehner, W. (1998). An

architecture for distributed OLAP. International

Conference on Parallel and Distributed Processing

Techniques and Applications. Available at:

https://www.tib.eu/en/search/id/TIBKAT%3A316251313/P

roceedings-of-the-International-Conference-on/.

[21] Comer, D. (1979). The ubiquitous B-tree. ACM

Computing Surveys, 11(2), 121–137.

