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ABSTRACT 
Estimating the pose of objects with circle feature from images is a basic and important question in computer vision 

community. This paper is focused on the ambiguity problem in pose estimation of circle feature, and a new method is proposed based 

on the concentric circle constraint. The pose of a single circle feature, in general, can be determined from its projection in the image 

plane with a pre-calibrated camera. However, there are generally two possible sets of pose parameters. By introducing the concentric 

circle constraint, interference from the false solution can be excluded. On the basis of element at infinity in projective geometry and 

the Euclidean distance invariant, cases that concentric circles are coplanar and non-coplanar are discussed respectively. Experiments 

on these two cases are performed to validate the proposed method. 
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I. INTRODUCTION 
 

The circular feature is basic geometric shape of 

objects around us. Many researchers [1-6] choose circular 

patterns to calibrate camera parameters. Also, it is used as a 

target feature to localize and recognize objects in robotic 

vision. Therefore, getting the position and orientation of a 

circle feature from 2D images with respect to a reference 

frame is of fundamental importance. 

It is generally known that there are generally two 

possible 3D circles in different poses of which projections 

are the same. Safaee-Rad et al.[7] gave a closed-formed 

analytical solution to the problem of 3D pose estimation of 

circular features. Shiu et al. [8] presented another method to 

obtain the closed form solution for this problem on the basis 

of analytical geometry. Chen et al.[9] described a circle 

feature based pose estimation method which is directly 

based on two particular chords of the circular object. The 

corresponding 2-D feature chords can be defined by using 

two particular planes related to the 3-D viewing cone 

constructed from the image of the circular object. Zheng et 

al.[10] employed the projective equation of a circle and 

presented a brand new geometric explanation for the 

ambiguity problem. Unfortunately, these researchers[7-10] 

did not give a program to eliminate the false solution. 

Additional information of a laser ranger finder[11] was 

used to select the correct one from two possible solutions. 

An auxiliary coplanar point and skew lines were introduced 

respectively as additional constraints to differentiate the 

real pose from the other[12,13]. 

This study presents a method to determine the 

correct pose using a concentric circle constraint. When two 

concentric circles are coplanar, the imaged circular points 

(ICPs) can be uniquely determined[14]. Thus, the false 

solution can be excluded immediately. In the case of non-

coplanar situation, the false solution can be removed with 

the Euclidean distance invariant. Detailed proofs are given 

and experiment results show that the proposed method is 

valid. The original conference version of this paper can be 

found in [15]. More results in non-coplanar cases are 

included in this version.  

The remaining part of this paper is organized as 

follows. Section 2 presents the pinhole camera model and 

the pole-polar relationship in projective geometry. The 

ambiguity in pose estimation of single circle feature and 

details of our method using the concentric circle constraint 

are elaborated in Section 3. Test results are presented in 

Section 4. Finally, conclusions are given in Section 5. 

 

II. BASIC CONCEPTS AND 

PRINCIPALS 
 

Without loss of generality, the following 

discussions are based on the prerequisite that the camera 

used in our experiments is pre-calibrated. In order to keep 

units the same, all the image coordinates are transformed to 

the normalized focus plane of which focus length is 1. So 

the results are in the focal length f. 

2.1 THE CAMERA MODEL 

As it can be seen in the previous publications 

[10,11], a general projection camera can be modeled as 
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ideal pinhole imaging model.A 3D point 
3x in space is 

projected onto an image point 
2m according to the 

mapping

 

   1 2 3, , , ,sm Px K R t x K r r r t x     
            

(1) 

 

          where s is a scale factor, P is the projection matrix, R 

and t represent the relative rotation and translation between 

the world reference frame and the camera coordinate frame,

m and x are the homogeneous coordinates of image point

m and 3D point x , respectively. 

2.2 THE POLE-POLAR RELATIONSHIP 

A point x and conic C define a line l Cx .The 

line l is called the polar of x with respect to C , and the 

point x is the pole of l with respect to C .The polar line l

intersects the conic C in two points. The two lines are 

tangent to C at these points intersect at the point x .The 

above relationships are illustrated in Fig. 1. Specifically, 

suppose the conic C is the projection of a 3D circular 

feature and x is the image of the circle center. Thus the line 

determined from the conic C and the center image x is the 

vanishing line[16]. 

 

 

 

 

 

 

 

 

 

 

Figure 1: The pole-polar relationship. 

 

III. METHOD FOR THE SOLUTION OF 

AMBIGUITY IN POSE ESTIMATION 

 

To find 3D positions of circular features with 

monocular monocular vision system, this study proposed to 

employ the concentric circle constraint to remove the false 

pose. Cases that concentric circles are coplanar and non-

coplanar are discussed in this section, respectively. Next, 

this study presents a description of the pose ambiguity. 

3.1. THE AMBIGUITY PROBLEM IN POSE 

ESTIMATION OF A CIRCULAR FEATURE 

 

 
Figure 2: The pinhole camera model in the scene. 

 

The position and orientation of a circular feature in 

3D space is completely specified by the coordinates of its 

center and the normal vector. Here this study introduces a 

novel explanation [10] for the ambiguity based on the ICPs. 

Three coordinate frames are shown in Fig. 2. The origin of 

the world coordinate system (WCS) is at the center of the 
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circle C , and the circle C is in the plane w wX OY . The 

camera coordinate system (CCS) c c c cO X Y Z is a three 

dimensional frame with the originOc, and the coordinate 

axis cZ is perpendicular to the image plane. The image 

frame u v is a 2D frame of which the axis u and v are 

parallel to the axis cX and cY  of CCS, respectively. 

As shown in Fig. 2, let r denotes the 3D circle 

radius. The circular feature Cin WCS can be written in a 

matrix form as 

 21,1,Q diag r  (2) 

And its dual form can be expressed as: 

 

 1 21,1, 1dualQ Q diag r   (3) 

With the projection matrix P inthe equation (1), the dual circle image
*C satisfies: 

    

     

*

2

1 2 1 2

2

3 3

1 1 1

1

T

dual

T T

T TT

kC PQ P

K r r T diag r r r T K

KK Kr Kr r KT KT



 

  

(4) 

where 3v Kr is the vanishing point of the circle’s 

normal,  q KT r is the image coordinates of the 

circle’s center, 
* TKK  is the inverse of the image of 

the absolute conic (IAC). 

 
Figure 3: Projections of the absolute conic and the circle: (a) the general case and (b) a special case. 

 

The relationship between the IAC and the image 

of projected circle is shown in Fig.3. The image of the 

circle C intersects the IAC at four complex points, which 

can be divided into two pairs of complex conjugate points. 

Only two of them are the real ICPs [10]. 

3.2 COPLANAR CONCENTRIC CIRCLES 

 

In the case of coplanar concentric circles, the 

projection of two concentric circles 1C and 2C in 3D space 

takes the form of ellipse [8] (except in degenerated cases 

where the projection is a segment), which can be 

represented as two ellipses 1e and 2e . As depicted in 

Fig.4(a), two viewing cone are defined by the same base 

(the supporting plane of two concentric circles) and a 

vertex (the center of the camera’s lens). 
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Figure 4: Projections of the concentric circles: (a) the coplanar case and (b) the non-coplanar case. 

 

Proposition1. Suppose oc is the image of the concentric 

circle center, 1c is the ellipse equation which represents 

the image of the circle 1C in 3D space. Then the vanishing 

line l can be determined by a pole-polar relationship 

between the center image oc and the ellipse 1c . 

 

Proof. Let  0 0
T

w wP x y  be a vanishing point 

on the concentric circle’s supporting plane, the vanishing 

line can be expressed as 

  0 0 *0 0
T

w w w wl P x y Ax By D      (5) 

 

Coordinates of the points lie on the vanishing line

l is infinite, so the coefficients A and B in the equation 

(5) should satisfy 0A B  . Thus, the vanishing line l

can be rewritten as  0 0 1
T

l  . Conversely, let

 0 0 1
T

wO x y be the circle center, the 3D circle 

centered at  0 0,x y with the radius r is

   
2 2 2

0 0x x y y r    . Thus, the line determined 

by a pole-polar relationship between the circle center wO

and the 3D circle can be expressed as 

 

0

0

2 2 2

0 0 0 0

1 0

0 1

1

x x

l y y

x y x y r

   
   

 
   
         

 (6) 

 

Comparing the equation (5) with equation (6), it 

can be concluded that the line l is a vanishing line. Since the 

pole-polar relationship is a projective invariance, the 

vanishing line can be obtained with the image of a circle 

and the image of the corresponding circle center.  

According to the proposition 1, the vanishing line

l can be determined by the concentric circle constraint. 

According to the description in section 2, it can be known 

that the perspective ellipse C and the IAC  have four 

intersections in common. Two of them are the ICPs. With 

the introduction of a concentric circle constraint, ICPs can 

be determined uniquely from the intersections between the 

vanishing line l and the ellipse 1e .  

Let co be the image coordinates of the circle center 

in the CCS. Apparently, there is a pole–polar relationship 

between the circle center co and the vanishing line l  

c cl o   (7) 
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where  stands for equality up to scale. 

Let mI and mJ represent the ICPs, and they can be 

obtained with known IAC and projection equations of 

concentric circles. The rotation matrix component can be 

expressed as [1]: 

 

 

   

1

1 1

1

2 2

1 1

3 3

Re ,

Im ,

Re Im ,

m

m

m m

r s K I

r s K I

r s K I K I





 





       

 (8) 

 

where 1s ,
2s and

3s are constants. 
3s can be obtained by

3 1r  . 

The vanishing line passes through the ICPs, and the 

projection of circle center is solved via the equation (7). 

Thus, the translation vector t can be recovered by  
1

4 ot s K m  (9) 

where 4s is a constant, om is the image of the concentric 

circle center. 

In the case of coplanar circles, position parameters 

can be optimized with the additional circle constraint [6]. 

And the orientation parameters can be achieved in another 

way [2, 5]. After recovering the circle’s projected center, a 

unit normal to the circle plane can be computed directly

 

12

22

32

c

c

R X

R NQ Y

R f

   
   

 
   
      

 (10) 

where  N  denotes the normalization into a unit 

vector, cX  and cY are the image coordinates of the circle’s 

projected center, Q denotes the ellipse matrix which is 

defined in [16] 

 

2

2 2

2 2

2 2

A B D f

Q B C E f

D f E f F f

 
 


 
  

(11) 

 

3.3 NON-COPLANAR CONCENTRIC CIRCLES 

Similar to the case of coplanar circles, the non-

coplanar concentric circles are is common enough in our 

daily life. And here, one of the two non-coplanar concentric 

circles will be seen as an additional constraint to 

differentiate the real pose from the other. The 3D 

coordinates of the circle center and the normal vector of the 

supporting plane with a known radius [7,8] can be obtained 

easily.  

Suppose R and rare the radii of non-coplanar 

concentric circles, the perspective projection of the big 

circle in the image plane and the origin of the CCS 

determine a cone. Then what we need to do is to find a 

plane which intersects the cone and the section is a circle 

with a radius of R. The pose of the small circle can be 

solved in a similar way. At this point, the ambiguity 

problem in pose estimation can be shown to have two 

planes satisfy that the intersecting curve is a circular feature 

with the desired diameter. 

Concentric circle constraint is employed to remove 

the false intersecting plane. Thus, two 3D cones are 

determined by two bases (the images of two concentric 

circles) and a common vertex (the center of the camera’s 

lens) in Fig. 4. In order to facilitate the analysis, this study 

chooses a special projection plane in which the projections 

of two concentric circles are two lines. 

According to the conclusion in [7], this study 

obtain a standard form of the cone after the transformation 

of the reference frame with a matrix P : 

 

 1

1 2 3, ,TP QP P QP diag        (12) 

 

It should be noted that the transformation is a pure 

rotational matrix. Meanwhile, a new frame of which the 

axis is aligned with the cone’s rotation axis is generated. 

The projections of the cone and the sectioning planes in the 

XOZ plane are shown in Fig. 5. The distance in the 

Euclidean space is a geometric invariance. Thus the 

segment along the generatrix of the object is invariable in 

CCS or WCS. The clue is used to exclude the false solution. 

Projection of the cone and the sectioning planes on 

the XOZ plane. MN and 1 1M N are both projections of the 

non-coplanar concentric circles and a set of parallel lines. 
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So are CD and 1 1C D . 1O , 2O , 3O and 4O are the 

projections of the circle center. (a) The big circle is in front. 

(b) The small is in front. 

 
Figure 5: Projections of the cone and the section planes on the XOZ plane.  MN and M1N1are both projections of the non-

coplanar concentric circles and a set of parallel lines. So are CD and C1D1. O1, O2, O3 and O4 are the projections of the circle 

center. (a) The big circle is closer to the camera. (b) The small is closer to the camera. 

 

If 1 1CC NN can be proved on a condition 

which the distance between the parallel lines is greater than 

zero and the angle between the line MN and CD is nonzero 

(that is, there are two possible pose solutions), it can be 

concluded that the concentric circle constraint is an 

effective way to remove the false pose. 

Proposition 2. The pose parameters can be uniquely 

determined if 1 1CC NN is proved. 

Proof. Fig. 5 shows a standard cone and two 

section planes projected onto the plane XOZ . The dashed 

lines represent auxiliary lines added for completing the 

proof. The line 1 1C F is parallel to line 1NN , and 1 2C F is 

perpendicular to OZ . Details of the proof are represented 

as shown below. 

 

1 1

1 1

NN FC

ONN OFC 

 

 
 

1

1

NN ON ON

FC OF ON NF
  


 

Hence, it can be obtained that  

1 1FC NN . 

Let 1 11, 2C CF CFC     

1 1

1

1

1

2=

= 90

2 90

1 90

2 1

FC H C HF

FC H HEO HOE

FC H HOE

PCC







  

   

  

 

  

  




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Thus, it can be obtained that 

1 1 1CC C F N N  .   

 

The method for excluding the false pose with the 

concentric circle constraint is outlined as follows. 

 Establishing two ellipse equations as 1e and
2e with the 

ellipse fitting algorithm [16]. 

 Establishing the equation of the cone defined by the 

base (the projection of the principal circle) and the 

vertex (the center of the camera’s lens). 

 Determing  1,2,3i i  in the equation (12) with 

the method proposed in [8]. 

 Calculating the projections of non-coplanar concentric 

circles in the plane XOZ . 

 Computing lengths of the line 1CC and 1NN . 

 Removing the false pose solution by comparing the 

results in step 5 with the real length. 

 

IV. EXPERIMENTAL RESULTS 
 

In order to verify the method above, the ellipses 

need to be detected firstly. In this section, the existing 

ellipse fitting algorithm is directly employed to get the 

projection equation in tests. Accuracy and efficiency of the 

pose estimation largely depends on the ellipse-fitting 

algorithm. Szpak et al.[17] proposed a guaranteed ellipse 

fitting method that is different from conventional 

methods[18-20]. They strike a balance between geometric 

methods and algebraic methods. This guaranteed method is 

thus employed to achieve ellipse equations in images. Our 

system setup is shown in Fig.6. 

 

 
Figure 6: The system setup. 

 

To verify the proposed method, concentric circles 

of coplanar case and non-coplanar case are tested, 

respectively. In our experiments, an industrial CCD camera 

with a resolution of 2456×2058 is used, and the sensor is 

pre-calibrated[21]. The matching lens is computer M1224 

with a focal length of 12 mm. At the same time, an absolute 

measuring arm with measurement precision of 0.049 mm is 

used to evaluate our method. 

 

Table1:Results from the coplanar case. The calibrated results and measurement results are determined by the absolute 

measuring arm and the vision system, respectively 

Scene 
Measurement results Calibrated results 

Error(TV) 
UN

 
TV

 
UN TV 

a 

0.1065

0.0859

0.9907

 
 

 
  

 

168.1180

43.8985

698.1721

 
 

 
  

 

0.1097

0.0832

0.9905

 
 

 
  

 

170.1304

43.6831

701.7931

 
 

 
  

 

2.0124

0.2154

3.6210

 
 
 
  
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4.1 THE COPLANAR CASE 

For the coplanar case, synthetic and real images 

are tested respectively. The first set of tests utilize the 

synthetic data and the corresponding pattern is displayed on 

a computer screen (see Fig.7). A circular part is fixed to a 

plate in the second set. The experiment results are shown in 

Table 1 (UN represents the unit normal and TV represents 

the translation vector). 

 

 
Figure 7: The coplanar case.(a) and (b) are the first group.(c) and (d) are the second group. 

4.2 THE NON-COPLANAR CASE 

Fig.8 shows two different scenes of the non-

coplanar circle feature. The generatrix length between 

concentric circles (GCC) is 45.21 mm. The real pose of part 

can be judged according to the GCC. The corresponding 

experimental results are demonstrated in Table 2 (GCC 

represents the generatrix length between concentric circles).

b 

0.0127

0.0768

0.9970

 
 

 
  

 

56.2672

43.0540

700.0083

 
 

 
  

 

0.0159

0.0755

0.9970

 
 

 
  

 

54.5512

42.2011

703.9146

 
 

 
  

 

1.7160

0.8529

3.9063

 
 
 
  

 

c 

0.5019

0.1250

0.8558

 
 

 
  

 

138.5390

10.0868

746.7406

 
 


 
  

 

0.5020

0.1244

0.8559

 
 

 
  

 

136.4270

9.1214

749.3097

 
 


 
  

 

2.1120

0.9654

2.5691

 
 
 
  

 

d 

0.4712

0.1864

0.8621

 
 

 
  

 

144.6577

7.4181

735.9604

 
 


 
  

 

0.4729

0.1839

0.8617

 
 

 
  

 

146.3175

6.9782

738.8505

 
 


 
  

 

1.6598

0.4399

2.8901

 
 
 
  
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Figure 8: The non-coplanar case. 

 

Table2:Results from the non-coplanar case. The calibrated results and measurement results are determined by the absolute 

measuring arm and the vision system, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Table 2, two different GCC can be 

acquired in each test image because of the pose ambiguity. 

The correct GCC is closer to the calibrated result than the 

false GCC corresponding to the ambiguous pose. The pose 

ambiguity can thus be solved with the aid of GCC. More 

results in different non-coplanar cases are shown in Fig.9 

and Fig.10. 

 

 

Scene 
Measurement results Calibrated results 

UN TV GCC
 

UN TV GCC 

a 

0.2341

0.1647

0.9582

 
 

 
  

 

29.5012

8.6430

712.1488

 
 


 
  

 

 

46.98 

 0.2370

0.1609

0.9581

 
 

 
  

 

30.7920

8.9972

714.3658

 
 


 
  

 
45.12 

 0.2097

0.0870

0.9739

 
 

 
  

 

25.8187

7.6664

712.2697

 
 


 
  

 

 

40.24 

 

b 

0.2201

0.1556

0.9630

 
 

 
  

 

158.0637

9.0703

707.3917

 
 


 
  

 45.70 
0.2229

0.1521

0.9629

 
 

 
  

 

 

159.5591

9.5237

709.5169

 
 


 
  
 

45.33 

 0.2056

0.0694

0.9762

 
 

 
  

 

154.6250

8.6151

707.5062

 
 


 
  

 41.96 
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Figure 9: Additional results corresponding to the non-coplanar case. 

 

 
Figure 10: Additional scenes of the non-coplanar case. 

 

As shown in Fig.9, the deviation between the 

correct GCC and the calibrated GCC is less than 1 mmover 

different scenes. Note that the difference between 

measurement results mainly comes from the manual error. 

 

V. CONCLUSIONS 
 

In this paper, this study proposed a new method to 

exclude the false solution in pose estimation of the circle 

feature. To this end, a simple concentric circle constraint 

can be frequently found in real scene is employed. Besides, 

the proposed method has both simple calculation process 

and stable results. The results of both synthetic images and 

real images clearly show the effectiveness of the proposed 

method. Also, the ellipse detection and ellipse fitting are the 

main error source for pose estimation with concentric circle 

feature. 
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