
International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-11, Issue-3 (June 2021)

www.ijemr.net https://doi.org/10.31033/ijemr.11.3.4

 30 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Real-Time WebRTC based Mobile Surveillance System

Alistair Baretto
1
, Noel Pudussery

2
, Veerasai Subramaniam

3
and Amroz Siddiqui

4

1
Student, Department of Computer Engineering, Fr. C. Rodrigues Institute of Technology, Navi Mumbai, INDIA

2
Student, Department of Computer Engineering, Fr. C. Rodrigues Institute of Technology, Navi Mumbai, INDIA

3
Student, Department of Computer Engineering, Fr. C. Rodrigues Institute of Technology, Navi Mumbai, INDIA

4
Assistant Professor, Department of Computer Engineering, Fr. C. Rodrigues Institute of Technology, Navi Mumbai, INDIA

1
Corresponding Author: alistair.baretto@gmail.com

ABSTRACT

The rapid growth that has taken place in Computer

Vision has been instrumental in driving the advancement of

Image processing techniques and drawing inferences from

them. Combined with the enormous capabilities that Deep

Neural networks bring to the table, computers can be

efficiently trained to automate the tasks and yield accurate

and robust results quickly thus optimizing the process.

Technological growth has enabled us to bring such

computationally intensive tasks to lighter and lower-end

mobile devices thus opening up a wide range of possibilities.

WebRTC-the open-source web standard enables us to send

multimedia-based data from peer to peer paving the way for

Real-time Communication over the Web. With this project,

we aim to build on one such opportunity that can enable us to

perform custom object detection through an android based

application installed on our mobile phones. Therefore, our

problem statement is to be able to capture real-time feeds,

perform custom object detection, generate inference results,

and appropriately send intruder alerts when needed. To

implement this, we propose a mobile-based over-the-cloud

solution that can capitalize on the enormous and encouraging

features of the YOLO algorithm and incorporate the

functionalities of OpenCV’s DNN module for providing us

with fast and correct inferences. Coupled with a good and

intuitive UI, we can ensure ease of use of our application.

Keywords— Computer Vision, Deep learning, WebRTC,

YOLO, Android Development, REST API

I. INTRODUCTION

Security is of major concern in the 21st century.

Security in corporate and personal spaces has become very

important in recent times. It is a necessity in modern times

in corporate sections. Physical security guards like

watchmen are a feasible solution except when there is a

restriction of location access like in parking spots, offices

etc. In such conditions a remote surveillance would be a

better option and much more efficient. Therefore, different

security systems have been developed like intruder alarms,

CCTV, PC based video footage systems etc. [8] These

systems are mostly wired and require a dedicated complex

setup to get them running. Also, these setups are expensive

to set-up and keep running, moreover, once setup they are

pretty much static.

With the bloom of 4G-5G technology, wireless

bandwidth increased, which made it possible to develop

applications for mobile phones to perform multimedia

streaming. This gives us an edge in developing smart

wireless surveillance systems. In order to overcome the

limitations of traditional surveillance systems, this paper

proposes using android devices as a surveillance device,

which makes it possible to monitor and target any site,

anytime and anywhere via an android smartphone under

the coverage of wireless networks. The basic requirements

for this proposed system are good internet connectivity and

a smartphone with a rear camera.

Moreover, since most people are familiar with

using a smartphone, it makes it easier for them to set it up

whenever and wherever required and so such a service can

be quite cost effective and user-friendly.

Through this paper, we propose a WebRTC based

surveillance system to make the streaming and data

transfer possible with the lowest possible latency.[5] Our

mobile application will capture the live feed and save the

images at the server end which can be viewed through a

secondary android application. Additionally, the live

inference can be viewed from another android device

making it possible to remotely monitor events. To create

an alerting mechanism that notifies the concerned

authorities about the presence of an intruder in a restricted

area, we have used a YOLO algorithm-based object

detection module.[11]

The paper is organized into multiple sections: the

first comprising of a brief introduction to the topic; the

second summarizes some of the related work; the third

states our approach, discusses the proposed system and the

algorithm used for performing object detection i.e., the

YOLO algorithm. The fourth illustrates our system

architecture and the experimentally inferred results are

presented in the fifth section. The sixth and final section

concludes our report.

II. RELATED WORKS

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-11, Issue-3 (June 2021)

www.ijemr.net https://doi.org/10.31033/ijemr.11.3.4

 31 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Andrei Costin [8] makes use of different data-sets

to exemplify the various new and existent threats in real-

time video surveillance, Closed-Circuit Television

(CCTV) and IP-camera based systems. These insights

were used in identifying the vulnerabilities associated

while building and deploying such systems. A summary

table has been created listing some of these novel threats

alongside their tested or proposed countermeasures. This

can then be used as a checklist in analyzing the level of

security while developing new CCTV/monitoring systems.

The publication further provides some recommendations

on risk mitigation and management which can optimize

security and privacy levels provided by the software,

firmware, the network infrastructure and the operation of

surveillance systems. This paper aims to shed light on the

severity of the threat landscape that such set-ups are

exposed to while encouraging and motivating future

research to expand the scope of this field beyond its

existing boundaries.

Limi Kalita [2] elucidates the fundamentals of

socket programming. The paper discusses various sub-

sections of network programming and the concepts

required in developing socket-based network applications.

The paper states the logic behind client-server

communication while introducing various operations of

sockets and ports. It illustrates the functionality of TCP

and UDP based socket programming. It concludes by

explaining how Java is preferred over other languages for

using the socket function/methods in establishing client-

server-based communication systems.

Santos-González I et al. [5] has performed a study

comparing some of the widely used video streaming

protocols: The Real Time Streaming Protocol (RTSP) and

WebRTC (Real time communication for the Web).

Additionally, based on these protocols, the paper proposes

two android mobile based applications whose primary aim

is to find out to what extent connection establishment time

and the stream reception delay affect the streaming quality

of the service. These applications are further compared

with some of the very common video streaming

applications for Android. The analysis concluded that the

performance of those streaming applications with respect

to the stream packet delay, improved considerably using

the WebRTC based implementation.

Naveen Kumar et al. [10] states the basics of the

cross-platform OpenCV library and all its associated

functions used in image processing and video feed

analysis. It comprises of various sub-libraries and

functions that can aid in solving computer vision problems

and containing both low level pre-processing functions and

high-level algorithms for face detection, feature matching

and tracing. The paper explains various applications where

it can be deployed like Motion capture, Intruder systems,

Authentication services and Edge detection programs.

They've also briefly given an account of Image filtering

and its transformation methodologies, Object tracking and

feature detection.

Q. Mao et al. [3] state the challenges of running

computationally intensive tasks on embedded devices and

further propose a YOLO network that doesn’t compromise

much on detection accuracy and is much more lightweight.

They considerably brought down the parameter size of the

network by using depth separable and point-wise group

convolutions that are based on Darknet-53. In the process

they managed to create a backbone network for feature

extraction that was only 16 percent of the conventional 53

layered Darknet. Since accuracy is a factor that cannot be

degraded, a Multi-Scale Feature Pyramid Network based

on an easier U-shaped structure was added that ultimately

improved the performance of object detection on multiple

scales and was called Mini-YOLOv3. This model is

relatively lighter in size and contains a lesser number of

trainable parameters and floating-point operations (FLOPs)

in comparison to YOLOv3.

III. PROPOSED SYSTEM

In this chapter we discuss our approach,

implementation strategy and the technology stack that will

be used to perform surveillance and obtain inferences.

Additionally, we shed light on a few protocols which aid

us in carrying out the above tasks including a number of

recent and emerging technologies like WebRTC using

PeerJS, REST API's etc.

A. WebRTC

WebRTC stands for Web Real-Time

Communication using which we can add real-time

communication functionality to our application.[5] It

supports data, voice and video transmission, allowing

developers to build powerful video and voice-

communication services. WebRTC can be used in any

device with a JavaScript engine. This is because it is only

available as regular JavaScript API’s in major browsers

like Chrome, Firefox etc.

With the help of WebRTC, we can create a data

channel between two peers; in our case a server and a

client through which we can send data to and fro and this

is a secure channel.

WebRTC transports its data using the User

Datagram Protocol (UDP) unlike other browser

communication,[1] which use Transmission Control

Protocol (TCP). Due to timeliness over reliability being the

primary reason, UDP protocol is a preferred transport for

delivery of real-time data. In order to meet all the

requirements of WebRTC, the browser provides a cast of

protocols and services to traverse the many layers of NATs

and firewalls, negotiate the parameters for each stream,

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-11, Issue-3 (June 2021)

www.ijemr.net https://doi.org/10.31033/ijemr.11.3.4

 32 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

provide encryption of user data, implement congestion and

flow control, and more.

To do so, WebRTC uses something called a RTP

stack summarized in Table 1.

Table 1: RTP STACK

Protocol Full-From

ICE Interactive Connectivity Establishment

STUN Session Traversal Utilities for NAT

TURN Traversal Using Relays around NAT

SDP Session Description Protocol

DTLS Datagram Transport Layer Security

SCTP Stream Control Transport Protocol

SRTP Secure Real-Time Transport Protocol

 In order to establish and maintain a peer-to-peer

connection over UDP; ICE, STUN, and TURN are

necessary.[17] Encryption is a mandatory feature of

WebRTC, hence DTLS is used to secure all data transfers

between peers. SCTP and SRTP are the application

protocols used to multiplex the different streams, provide

congestion and flow control, and other additional services

on top of UDP. The Session Description Protocol defines

a standard for defining the parameters for the exchange of

media between two peers. Refer Figure 1. [1]WebRTC

data channels require no special infrastructure setup, the

only things it need is a signaling server to coordinate the

connection between peers, a STUN server to figure out

public identity of the individual peer and optionally a

TURN server to route messages between peers if a direct

connection between peers cannot be established (for

example when both peers are behind symmetric NATs or

restricted NAT).

Figure 1: RTP Stack

B. PeerJS

PeerJS wraps the browser's WebRTC

implementation to provide a complete, and easy-to-use

connection API. [6] This API can help establish a peer-

peer connection. Equipped with nothing but an ID, a peer

can create a P2P data or media stream connection with a

remote peer.

With PeerJS [21], identifying peers is simpler and

every peer can identify using a unique ID. A string that the

peer can choose itself, or have a server generate one.

Although WebRTC promises peer-to-peer communication,

we still need a server to act as a connection broker and

handle signaling and this server is called the signaling

server. PeerJS provides an open source implementation of

this signaling server called as PeerJS Server. This server is

written in Node.js. Refer Figure 2.

Figure 2: P2P PeerJS

C. Android Application

Android is an open source mobile operating

system based on a modified version of the Linux kernel

and it includes other open source software [19], designed

primarily for touchscreen mobile devices such as tablets,

smartwatches and smartphones. We have used Android

Studio IDE for developing the android applications. It

helps build and pack android files. Our android application

can run on any android device with a version requirement

of 6.0 and above. In order to create a connection between

our android device and the server using PeerJS via

WebRTC we need to leverage the chrome engine for

JavaScript present in all android devices.

D. Chrome Engine for JavaScript

Android uses a JavaScript engine called Chrome

V8 which is similar to a normal desktop JavaScript

Chrome engine [18]. In order to use this, Android Studio

provides us with an SDK under the name Chrome Webkit

to evaluate and run JavaScript code directly in android.

Thus, helping us leverage the power of WebRTC by

calling the WebRTC API's from the chrome engine itself.

E. NodeJS and Flask Server

Our server runs on NodeJS which is a runtime

environment for running JavaScript code outside of the

browser [20]. So, our application connects to this server

via a peer signaling server. This NodeJS server does the

task of connecting to the android device and getting the

frames and storing them. These frames are then sent over

to the Flask server using the REST API [16] where

inference is performed. The REST API is flask based,

since our application makes use of OpenCV DNN module

which is a python-based module.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-11, Issue-3 (June 2021)

www.ijemr.net https://doi.org/10.31033/ijemr.11.3.4

 33 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

F. OpenCV DNN Module

In order to perform inference at a faster rate, we

needed a framework which could provide us with high

speed inference rates for object detection using the YOLO

algorithm. OpenCV is built on C++ which itself is fast

since it is a compiled language and it also provides us with

python bindings for the same.[13] OpenCV can make use

of CUDA cores present in Nvidia based GPU’s to perform

inference at a much faster rate.[12] Refer table to view the

inference rates.

G. CoTURN - A TURN Server

For most WebRTC applications to function, a

server is required for relaying the traffic between peers,

since a direct peer to peer socket connection is not possible

between the clients (unless they reside on the same local

network). The common way to solve this is by using a

TURN server.[22] Traversal Using Relays around NAT

(TURN) is a protocol that assists in traversal of network

address translators (NAT) or firewalls for multimedia

applications. It is used to relay the traffic between peers

even if they cannot connect directly. It can be thought as a

workaround in-case a direct peer to peer connection fails.

CoTURN is an open-source implementation of TURN

(Traversal Using Relays around NAT) and STUN (session

traversal utilities for NAT).

H. YOLO Algorithm

Yolo or the “You Look Only Once” is an

effective real-time object detection algorithm.[11]

The algorithm applies a single neural network to

the full image, and then divides the image into regions and

predicts bounding boxes and probabilities for each region.

These bounding boxes are weighted by the predicted

probabilities. YOLO uses a totally different approach than

Figure 3: Architecture

other algorithms. YOLO is a clever convolutional neural

network (CNN) for doing object detection in real- time.

The algorithm applies a single neural network to the full

image, and then divides the image into regions and

predicts bounding boxes and probabilities for each region.

These bounding boxes are weighted by the predicted

probabilities. The one we used, YOLOv3[14] is really

powerful with a good tradeoff between accuracy and

speed. There is also another version of YOLO known as

’Tiny-YOLO’ which is a scaled down version of YOLO

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-11, Issue-3 (June 2021)

www.ijemr.net https://doi.org/10.31033/ijemr.11.3.4

 34 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

which gives faster results on low-end systems with slightly

lower results.[3] The benefits of YOLO have been applied

to various applications due to the availability of pre-trained

weights trained on the COCO dataset and reasonable

training times. For instance, we have demonstrated the use

of YOLO in counting traffic. This demonstrates the

viability of YOLO as being a reliable object detection

algorithm in diverse applications.

IV. ARCHITECTURE

 Our architecture mainly consists of two types of

server, one being the peer signaling server which is needed

for the initial handshake and connection for our mobile

application and the inference server. The second server is

the object detection server running YOLO as its object

detection algorithm. This server does the work of receiving

images from our mobile applications through PeerJS.

Refer Figure 3. The application flow is as follows:

1) The user signs in to our mobile application.

2) He/she is then greeted into the main screen from

where the user can start and stop the mobile

surveillance operation.

3) On setting the interval of frame capture and after

the clicking on start, the broker server receives

the unique ID of our android device and when the

android device requests for a connection to the

server, the broker/signaling does so by creating a

data channel between the two entities.

4) Once connection is established, the frames from

the android device are sent to the second server,

these images are received by the server in base64

format which are then converted into suitable

format to be fed into the Yolo architecture for

object detection.

5) If and when a person is detected the user is

notified via an email alert which contains the

image containing the detected person.

6) This android application also provides us with an

option to view the feed of an android device if

and when a session is active on the same User ID.

V. RESULTS

 This application has been tested on 6 devices

connected to the server at the same time. Also, there are no

data channel drops provided the internet connection is

stable. As long as the object detection speed is concerned,

refer to the Table 2 to get the comparative study of object

detection speed on an image with OpenCV DNN module

using YOLOv3 on GPU (Nvidia GTX 1050) and on CPU

(Intel i5).[9] This study is done on images with 11 persons,

8 persons and 4 persons respectively in the image frame.

Table 2: INFERENCE TIMINGS

Person Count GPU/CPU Inference Time

11 CPU 440ms

 GPU 8.98ms

8 CPU 425ms

 GPU 7.56ms

4 CPU 412ms

 GPU 6.98ms

VI. CONCLUSION

 A mobile based surveillance system is not only

the right step in technological advancement but also one

that helps us to explore more possibilities given the

resources at hand. Our application is designed to be

intuitive and user-friendly. Being an android app helps our

cause in tapping into the huge share held by Android

devices in the market thereby making it compatible to be

used on most mobile devices. Since the servers are hosted

over the internet and can be deployed on any

personal/organization’s system, the process has become

more efficient. Keeping in mind the limitations in the

ability to perform computationally intensive tasks on the

mobile itself, our system was built so as to keep it

lightweight and free of any processing overheads.

WebRTC, PeerJS and its associated technologies have

enabled smooth peer to peer communication. Combined

with the functionality of the OpenCV DNN module,

obtaining inferences is now much more flexible with good

accuracy. With security becoming a #NewNormal in our

lives, surveillance systems have become the need of the

hour. This is our attempt in this regard and we are

confident enough that such systems with adequate

optimizations are very much a part of our future and will

help to create and sustain a reliable and secure

environment for all of us.

ACKNOWLEDGEMENT

 We are grateful for the guidance given by our

mentor Prof. Shashikant Dugad and Mr. Manish Manepalli

for motivating us in developing an interest in the field of

Computer Vision and Deep Learning. We wish to

appreciate our guide Mr. Amroz Siddiqui for his constant

inputs and support. We would also like to thank our project

coordinator Ms. Rakhi Kalantri for providing us with

timely inputs about documentation and project timeline.

International Journal of Engineering and Management Research e-ISSN: 2250-0758 | p-ISSN: 2394-6962

 Volume-11, Issue-3 (June 2021)

www.ijemr.net https://doi.org/10.31033/ijemr.11.3.4

 35 This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

REFERENCES

[1] Santos-González I, Rivero-García A, Molina-Gil J, &

Caballero-Gil P. (2017). Implementation and analysis of

real-time streaming protocols. Sensors (Basel), 17(4), 846.

DOI: 10.3390/s17040846.

[2] Limi Kalita. (2014). Socket programming.

International Journal of Computer Science and

Information Technologies, 5(3), 4802-4807.

[3] Q. Mao, H. Sun, Y. Liu, & R. Jia. (2019). Mini-

YOLOv3: Real-time object detector for embedded

applications. In: IEEE Access, 7, 133529-133538.

DOI: 10.1109/ACCESS.2019.2941547.

[4] Real Time Transport Protocol (RTP). Available at:

https://www.geeksforgeeks.org/real-time-transport-

protocol-rtp/.

[5] Real-time communication for the web. Available at:

https://webrtc.org/.

[6] PeerJS Docs. Available at:

https://peerjs.com/docs.html#start.

[7] Srujan Patel, Naeem Patel, Siddesh Deshpande, &

Amroz Siddiqui. (2021). Ship intrusion detection system

with YOLO algorithm. International Research Journal of

Engineering and Technology (IRJET), 8(1).

[8] Andrei Costin. (2016). Security of CCTV and video

surveillance systems: Threats, vulnerabilities, attacks, and

mitigations. In: Proceedings of the 6th International

Workshop on Trustworthy Embedded Devices (TrustED

'16). Association for Computing Machinery, New York,

NY, USA, pp. 45–54.

DOI: https://doi.org/10.1145/2995289.2995290.

[9] W. Thomas & R. D. Daruwala. (2014). Performance

comparison of CPU and GPU on a discrete heterogeneous

architecture. International Conference on Circuits,

Systems, Communication and Information Technology

Applications (CSCITA), Mumbai, India, pp. 271-276.

DOI: 10.1109/CSCITA.2014.6839271.

[10] Mahankali, Naveen Kumar & Ayyasamy, Vadivel.

(2015). OpenCV for computer vision applications.

[11] Ahmad, Tanvir, MA, Yinglong, Yahya, Muhammad,

Ahmad, Belal, Nazir, Shah, Haq, Amin, & Ali, Rahman.

(2020). Object detection through modified YOLO neural

network. scientific programming.

DOI: 10.1155/2020/8403262.

[12] D. Steinkraus, I. Buck, & P. Simard. (2005). Using

gpus for machine learning algorithms. Available at:

https://hgpu.org/?p=1223.

[13] G. Bradski & A. Kaehler. (2008). Learning OpenCV:

Computer vision with the OpenCV library. O’Reilly

Media, Inc.

[14] J. Redmon & A. Farhadi. (2018). Yolov3: An

incremental improvement. arXiv preprint:

arXiv:1804.02767.

[15] Neumann, Andy, Laranjeiro, Nuno, & Bernardino,

Jorge. (2018). An analysis of public REST web service

APIs. IEEE Transactions on Services Computing, pp. 1-1.

DOI: 10.1109/TSC.2018.2847344.

[16] Chaitanya Mukund Kulkarni & Prof. M. S. Takalikar.

(2018). Analysis of REST API implementation.

International Journal of Scientific Research in Computer

Science, Engineering and Information Technology

(IJSRCSEIT). 3(5).

[17] Peng Liang & Yang Shun. (2010). Research and

implementation of voice transmission based on RTP

protocol. International Conference on Computational

Problem-Solving, Li Jiang, China, pp. 416-419.

[18] S. Delcev & D. Draskovic. (2018). Modern java script

frameworks: A survey study. Zooming Innovation in

Consumer Technologies Conference (ZINC), Novi Sad,

Serbia, pp. 106-109. DOI: 10.1109/ZINC.2018.8448444.

[19] J. Liu & J. Yu. (2011). Research on development of

android applications. In: 4
th

 International Conference on

Intelligent Networks and Intelligent Systems, Kuming,

China, pp. 69-72. DOI: 10.1109/ICINIS.2011.40.

[20] S. Tilkov & S. Vinoski. (2010). Node.js: Using

JavaScript to build high-performance network programs.

In: IEEE Internet Computing, 14(6), 80-83.

DOI: 10.1109/MIC.2010.145.

[21] M. Kuhara, N. Amano, K. Watanabe, Y. Nogami, &

M. Fukushi. (2014). A peer-to-peer communication

function among web browsers for web-based volunteer

computing. In: 14
th

 International Symposium on

Communications and Information Technologies (ISCIT),

Incheon, Korea (South), pp. 383-387.

DOI: 10.1109/ISCIT.2014.7011937.

[22] Rosenberg, J. (2010). Traversal using relays around

NAT (TURN): Relay extensions to session traversal

utilities for NAT (STUN). Available at:

https://tools.ietf.org/id/draft-ietf-behave-turn-05.html.

