
www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 20 Copyright © 2018. IJEMR. All Rights Reserved.

 Volume-8, Issue-5, October 2018

International Journal of Engineering and Management Research

Page Number: 20-23

DOI: doi.org/10.31033/ijemr.8.5.4

Application of Data Mining Techniques for Improving Continuous

Integration

Meenakshi Kathayat

Assistant Professor, Department of Computer Science & Engineering, Birla Institute of Applied Sciences Bhimtal,

Uttarakhand, INDIA

Corresponding Author: meenakshik.kathayat4@gmail.com

ABSTRACT
Continuous integration is a software development

process where members of a team frequently integrate the

work done by them. Generally each person integrates at least

daily - leading to multiple integrations per day. Integration

done by each developer is verified by an automated build

(including test) to detect integration errors as quickly as

possible. Many teams find that this approach reduces

integration problems and allows a team to develop cohesive

software rapidly. Continuous Integration doesn’t remove

bugs, but it does make them dramatically easier to find and

remove. This paper provides an overview of various issues

regarding Continuous Integration and how various data

mining techniques can be applied in continuous integration

data for extracting useful knowledge and solving continuous

integration problems.

Keywords-- Continuous integration, Agile development,

Software development, Data mining techniques

I. INTRODUCTION

The traditional software development life cycle

follows a Waterfall methodology that eventually morphed

into the Agile SCRUM lifecycle. But for most

organizations the current lifecycle resembles something

like an Agile-SCRUM-Fall.

Continuous integration (CI) is a phase in agile

development of software which allows developers to

frequently submit their piece of work in the central

repository (where the code resides and shared among

developers). Each developer pulls code from central

repository to their local machine and changes the code

according to the requirement. After modifying the code,

developer integrates that code to the central repository.

Then each integration is verified by an automated build, so

that teams can detect problems early. There is a CI server

present which performs this automated build task; it is the

duty of CI server to inform the respective developer if the

build is successful or failed. By integrating regularly, you

can detect errors quickly, and locate them more easily [1].

Figure.1 show Continuous integration workflow:

The CI lifecycle looks like this:

1. Check in code.

2. Pull code to be changed for build.

3. Run tests (CI server generates builds and then

arrange releases): Test individual models, run integration

tests, and run user acceptance tests.

4. Store artifacts and then build repository (It is for

artifacts storage, results storage, and releases storage).

5. Deploy and release (release automation product to

deploy applications or software).

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 21 Copyright © 2018. IJEMR. All Rights Reserved.

Figure 1. Continuous Integration Workflow

CI has many advantages and some of them are:

 There are no long and tense integrations.

 Visibility increases and so the communication

between developers increases.

 It can identify issues or bugs very fast and fix

them as soon as possible.

 More time can be given to adding features in

software rather than debugging errors.

 No need to wait to find out if a developer’s code

is going to work or not.

 Reduce integration problems so that the software

can be delivered more rapidly.

 Because integration is done so frequently, there is

significantly less back-tracking to discover where

things went wrong, so more time can be spent

building features.

II. CONTINUOUS INTEGRATION

DATA

There is a vast amount of data that is generated by

continuous integration and is ignored by the organizations.

First, the CI server contains data in the form of logs from

each build performed by each developer. The logs are

about which developer made which build at what time,

what is the code coverage after each build, current status of

the mainline code (Mainline code is the code present in the

central repository), which module is getting changed more

frequently, and so on.

Second, monitoring systems such as Zabbix, New

Relic, Nagios, Icinga generates alarms for alerting various

situations. For example, if a pipeline breaks then mail is

sent by the monitoring system to a certain group of

developers, if some code breaks due to a developer then

mail goes to the team leader and the developer, how many

test cases were done this mail goes to the QA (Quality

Assurance) team. The monitoring system alerts by sending

alarms to developers related to that situation.

Fig. 2.1 Types of CI data to be mined

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 22 Copyright © 2018. IJEMR. All Rights Reserved.

All of this data is present in textual form (logs, as

well as monitoring system data) and is usually ignored by

the developers. This data contains information about all the

successful builds, all the failed builds and performance of

all the developers. The need is to extract this information

from this raw data, so that it can be useful for either the

maintenance period of a project or for developing more

future software.

III. MINING CONTINUOUS

INTEGRATION DATA

One of the main objectives of continuous

integration is to reduce the problems of “integration hell”,

i.e., different engineers working on the same code base at

the same time, such that their changes have to be merged

together [2]. Various aspects which should be considered

for applying mining in CI data are:

 When a software product is composed of many of

or even hundreds of components with

complicated dependency relationship among each

other, one component's change can affect lots of

other components' behavior [4]. CI solves this

problem by integrating as soon as possible and

fixing errors.

 It requires each developer to finish a task, usually

within a few hours, and submit the code to the

version control repository regularly and early,

then CI server launches integration build

automatically by detecting the code change, run

code static checking and automated testing, try to

discover new potential defects introduced by this

newly changed code and ensure the other

functionalities are not affected, then CI server

generates the final result report and sends the

notification to corresponding developers and

managers with final result automatically. The

final result report contains build status, duplicate

logic checking, code complexity degree report,

compliance with coding standard, unit testing

result, function testing result, etc [5].

 Different software metrics can be added with the

log in CI server because software metrics are the

quality measure of any software and can produce

some useful result.

 Monitoring produces so many alarms with high

frequency and everyone ignores them but instead

of ignoring them we can device it in such a way

that it will produce only genuine alarms. This will

help everyone to be alert when the alarm

produces.

Fig. 3.1 Various methods of data mining for CI data

Following are various data mining techniques

given with example of how we can apply them on

continuous integration:

 Clustering is a process of partitioning a set

of data (or objects) into a set of meaningful sub-

classes, called clusters. It can be applied on CI

logs to group similar logs together with some

distance with those logs which are different. It

can also be used to cluster alarms which are

genuine in one cluster and non-important alarms

in another. Then produce only those alarms which

are genuine from its cluster. There are various

clustering techniques which can be used: KNN,

K-means Clustering, etc.

 Classification is the process of sorting and

categorizing data into various types, forms or any

other distinct class. Classification can be achieved

by two steps: training and testing. In the training

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 23 Copyright © 2018. IJEMR. All Rights Reserved.

step, it will use machine learning to train a model

on properties of logs; it will then create a machine

learning model of those logs. In the testing step,

the user will supply pre-computed model with

properties of new logs and the model will predict

results needed. Some of the classification

methods are: Naïve Bayesian classifier, decision

tree, ZeroR etc.

 Frequent patterns recognition and association

rules. We can find out due to which reasons the

failure of a build happens frequently, which

developer and what changes are responsible for

that build failure.

 Text mining is an area of data mining with

extremely broad applicability. Rather than

requiring data in a very specific format (e.g.,

numerical data, database entries, etc.), text mining

seeks to discover previously unknown

information from textual data [7].

 Text mining can be directly applied to logs because

logs are in textual form. Text frequency, classification,

clustering are the main areas in text classification. We can

mine logs in CI server to find out productivity of a team or

a developer, can find out which module is altering with

highest frequency and so on.

IV. CONCLUSION

Continuous Integration has become an established

best practice of modern software development[6]. It is the

practice of testing each change done to your codebase

automatically and as early as possible; members of a team

integrate their work frequently, usually each person

integrates at least daily which leads to multiple

integrations per day [3]. Since, CI generates a huge amount

of data in the form of logs and alarms which is not very

important from the view of organization. In this paper we

have discussed that this data can be important for solving

various issues related to CI. Then, we have proposed

various data mining techniques which can be applied in CI

data and how it can help in the maintenance and

development of software.

REFERENCES

[1] Cios, K.J., Swiniarski, W.R., Pedrycz, W., & Kurgan,

A. L. (2007). Data mining: A knowledge discovery

approach. New York: Springer.

[2] S. Kotsiantis, C. Pierrakeas, & P. Pintelas. (2004).

Prediction of student’s performance in distance learning

using machine learning techniques. Applied Artificial

Intelligence, 18(5), 411-426.

[3] Tiwari, Mahendra, Randhir Singh, & Neeraj Vimal.

(2013 Feb). An empirical study of application of data

mining techniques for predicting student performance in

higher education. International Journal of Computer

Sciences and mobile Computing, 2(2), 53-57.

[4] Tsai, C.F., Tsai, C.T., Hung, C.S., & Hwang, P.S.

(2011). Data mining techniques for identifying students at

risk of failing a computer proficiency test requires for

graduation. Australian Journal of Educational Technology,

27(3), 481-498.

[5] Mardikyan, Sona & Badur, Bertan. (2011). Analysing

teaching performance of instructors using data mining

techniques. Informatics in Education, 10(2), 245-257.

[6] Berry, J.A. Michael, & Linoff S. Gordon. (2004). Data

mining techniques for marketing, sales, and customer

relationship management. (2
nd

 ed.). Wiley Publishing.

[7] Quinn Taylor & Christophe Giraud-Carrier. (2010).

Applications of data mining in software engineering.

International Journal of Data Analysis Techniques and

Strategies, 2(3), 243-257.

