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ABSTRACT 
Privacy preserving data mining is an important 

issue nowadays for data mining. Since various organizations 

and people are generating sensitive data or information these 

days. They don’t want to share their sensitive data however 

that data can be useful for data mining purpose. So, due to 

privacy preserving mining that data can be mined usefully 

without harming the privacy of that data. Privacy can be 

preserved by applying encryption on database which is to be 

mined because now the data is secure due to encryption. Code 

profiling is a field in software engineering where we can 

apply data mining to discover some knowledge so that it will 

be useful in future development of software. In this work we 

have applied privacy preserving mining in code profiling data 

such as software metrics of various codes. Results of data 

mining on actual and encrypted data are compared for 

accuracy. We have also analyzed the results of privacy 

preserving mining in code profiling data and found 

interesting results. 
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I.  INTRODUCTION 
 

Software systems are mainly complex and hard to 

conceptualize. This complexity, compounded by 

complicated dependencies and different programming 

practices, slows development and maintenance activities, 

leads to faults and defects and finally increases the cost of 

software [1]. Software engineering activities generate a 

huge amount of data that, if harnessed properly through 

data mining techniques, can help provide awareness into 

many parts of software development processes. Privacy 

preserving data mining is important because of the huge 

amount of personal data generated nowadays. Privacy 

preserving is an important issue in the data mining field. 

Many applications are benefited from data sharing, mainly 

data statistics and data mining. But the shared data may 

contain private information of the owner of data. It has a 

high risk of revealing data owner’s privacy [2]. Most of the 

times people are not interested in sharing their private data, 

they either not share their data or provide incorrect data. 

Due to this problem in data collection phase, the results of 

data mining techniques gets affected, which is based on 

sufficient amounts of accurate data for producing 

meaningful results or knowledge. Privacy preserving data 

mining (PPDM) has become increasingly popular because 

it allows sharing of private data for analysis purposes [3]. 

Code profiling is a form of dynamic program 

analysis that measures, for example, the space (memory) 

or time complexity of a program, the use of particular 

instructions, or the frequency and duration of function 

calls. Code profiling data of software can tell us about its 

various attributes regarding its nature and performance and 

is very important. It is a form of dynamic program analysis 

that measures, for example, the space (memory) or time 

complexity of a program, the use of particular instructions, 

or the frequency and duration of function calls. There are 

various software metrics which can come in code profiling 

data. In software engineering, program profiling 

or software profiling is a form of dynamic program 

analysis (as opposed to static code analysis) or the 

examination of a program’s behavior by gathered 

information as the program executes. The usual purpose of 

this analysis is to determine the sections of a program 

needed to optimize - to increase its overall speed, decrease 

its memory requirement or sometimes both. 

In this work Code profiling data of a project or 

code is very important to an organization. If it wants to 

mine this data without risking its privacy then privacy 

preserving mining is the best option for that purpose. We 

have taken various software metrics as code profiling data. 

Using this we create a model by learning existing 

successful project’s software metrics and then for a new 

project we can predict the value of an unknown metrics 
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based on the generated model. This can help an 

organization in 2 aspects-First, the privacy of the code 

profiling data is preserved. Second, we can predict 

unknown attribute for a new project using a model based 

on successful projects and we can know the shortcomings 

of the new project on that basis. 

 

II.  LITERATURE REVIEW 
 

Jian Wang, Yongcheng Luo, Yan Zhao, and Jiajin 

Le [3] have proposed a survey on privacy preserving data 

mining. They have described several privacy preserving 

data mining technologies clearly and then analyzed the 

merits and shortcomings of these technologies. They have 

discussed K-anonymity, the perturbation approach, 

Cryptographic techniques. They have suggested to use the 

Randomized Response techniques to solve the DTPD 

problem and introduced a condensation approach, which 

creates constrained clusters in the data set, and then 

generates pseudo-data from the statistics of these clusters. 

Pan Yang, Xiaolin Gui, Feng Tian, Jing Yao, and Jiancai 

Lin [2] have proposed a privacy-preserving data 

obfuscation scheme used in data statistics and data mining. 

Yuriy Brun, and Michael D. Ernst [6] have introduced a 

technique for finding latent code errors via machine 

learning over program executions. Their technique 

proposes a technique for identifying program properties 

that indicate errors. This technique generates machine 

learning models of program properties known to result 

from errors, and applies these models to properties of 

programs of code written to classify and rank properties 

that may lead the user to errors. Quinn Taylor, and 

Christophe Giraud-Carrier [9] have introduced applications 

of data mining in software engineering. Since software 

engineering activities are very complex, and the related 

activities often produce a large number and variety of 

artefacts, so that they are well-suited to data mining. 

Recent years have seen an increase in the use of data 

mining techniques on such artefacts with the aim of 

analysing as well as improving software processes for a 

given organisation or project. 

Tu Honglei, Sun Wei, and Zhang Yanan [4] have 

done a research on software metrics and software 

complexity metrics. Their work respectively expounds 

McCabe methods and C&K metric method for examples of 

complexity metrics. They also introduced the software 

metrics inclusive of the definition of metrics and the 

history of this field; then brought up the complexity 

metrics, such as McCabe complexity metrics and object 

oriented metrics, with real world examples. C&K method 

was brought up in 1994 by Chidamber and Kemerer.  

Yuriy Brun, and Michael D. Ernst [5] have introduced a 

technique for finding latent code errors via machine 

learning over program executions. Their technique 

proposes a technique for identifying program properties 

that indicate errors. This technique generates machine 

learning models of program properties known to result 

from errors, and applies these models to properties of 

programs of code written to classify and rank properties 

that may lead the user to errors. 

 

III.  PROPOSED WORK 
 

3.1 Proposed Algorithm 

Input: Data Set, key1, key2. 

Step 1. Generate Encrypted_Data Set using Encrypt (Data 

Set, Key1, Key2). 

Step 2. Apply k-means clustering (Data Set, 

Encrypted_Data Set) and k-NN classification (Data Set, 

Encrypted_Data Set). 

Step 3. Compare the results of above two for correctness. 

Step 4. Analyze mining results of the Data Set and 

calculate Correlation_Coefficient (Data Set) between all 

the attributes. 

Step 5. If correlation coefficient weak  Remove 

attributes. 

Step 5. Apply k-means clustering and k-NN classification 

again to get better results. 

Output: Data Set_Class, Correlation_Coefficient. 

 

 
Fig 3.1 Step wise block diagram of the proposed method. 
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IV.  EXPERIMENT AND RESULTS 
 

The proposed method is tested by code profiling data of 25 

software metrics and code coverage for 140 java codes. 

Source codes are not mined directly in this work because it 

is very complex to do that, that’s why we indirectly mined 

them using their code profiling data. Some of the java 

codes are written by us and some are taken from open 

source libraries. For each java code we have generated 26 

code profiling attributes, hence the database consists of 

140 instances, each for code profiling data of a particular 

code. We have generated this data by code profiling tools 

namely Eclipse Metrics and CodePro Analytix. The 

outputs generated by code profiling tools are as shown 

below for a single java code. 

 

 
Fig 4.1 Software metrics values generated by Eclipse Metrics tool 

 

 
Fig 4.2 Code Coverage generated by CodePro Analytix tool 
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As we can see this output is in GUI form and 

cannot be directly mined. So we had to convert it into 

concrete data form, so we extracted the XML file of this 

data. Through JAXP (Java API for XML Processing) we 

have converted this GUI data into actual data form and 

saved it into MS Excel sheets. The privacy preserving data 

mining techniques are applied on this data. Software 

metrics are generated for the codes written in java using 

these two tools. These tools generate output in GUI 

(Graphical User Interface) format. Then we have extracted 

XML file of this GUI format and through JAXP we have 

extracted the software metrics values from XML file. 

These values are saved as database for the codes and then 

mining is applied on this database. 

For preserving the privacy of code profiling data, 

we have encrypted this data using simple encryption 

algorithm with 2 keys. Then k-means clustering is applied 

to create 5 clusters, on encrypted data as well as on actual 

data. Comparison is made between both data for 

confirming that privacy is preserved and at the same time 

mining results do not vary.  

After generating these clusters we know the class of each 

instance. Through 10-fold cross validation and k-NN 

classifier we have compared the actual and encrypted 

results of classification technique. Privacy is preserved by 

encryption and mining results are also very good and 

correct. There is not any variation between actual and 

encrypted data results. We analyzed these clusters with the 

properties of our data and found that the clusters are 

majorly based on two attributes: Code Coverage and LOC. 

We found that some clusters lie in unexpected clusters. For 

example, we made inheritance related codes and all of 

them are in same clusters except one of them. Due to this 

unexpected behavior of data we calculated correlation 

coefficient between all the attributes of our dataset. For all 

instances we calculated correlation coefficient for various 

important attributes, then we removed all those attributes 

which are not correlated positively and again clustering is 

performed for better results with more accuracy and 

precision. On analyzing we found that on removing weakly 

correlated data, we improved the clustering method but at 

the same time classifier’s accuracy is decreased.

 

 
 

Fig 4.3 Comparison graph between clusters before vs. after 

 

So, it can be concluded that by removing weakly 

correlated attributes of code profiling data we can improve 

the clustering but at the same time they are resulting into 

decrease in accuracy of classifier. 

 

V.  CONCLUSION AND FUTURE 

SCOPE 
 

We have pre processed 140 java codes to generate 

their code profiling data using code profiling tools such as, 

CodePro Analytix and Eclipse Metrics. After that we have 

converted this GUI data through JAXP in the actual data 

form. That’s how we get our pre processed database on 

which we have applied privacy preserving mining. For 

preserving privacy of this data we have applied encryption 

technique on this data and generated its encrypted form. 

Then we have applied k-means clustering and 10-fold 

cross validation to find accuracy of k-NN classifier on this 

data through Euclidean distance and analyzed the results 

thereafter. 

Privacy preserving mining is still an emerging 

research area in the field of software engineering. Various 

organizations have enormous amount of sensitive data 

about their projects which can be mined to get knowledge 

for future improvement in this field. Software generates 

huge amount of data which can be mined to discover 

knowledge. So, different combinations of encryption 
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methods and classification methods can be used to 

improve the accuracy of privacy preserving mining in code 

profiling data.  
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