
www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 24 Copyright © 2018. IJEMR. All Rights Reserved.

 Volume-8, Issue-5, October 2018

International Journal of Engineering and Management Research

Page Number: 24-28

DOI: doi.org/10.31033/ijemr.8.5.5

Privacy Preserving Mining in Code Profiling Data

Meenakshi Kathayat

Assistant Professor, Department of Computer Science & Engineering, Birla Institute of Applied Sciences Bhimtal,

Uttarakhand, INDIA

Corresponding Author: meenakshik.kathayat4@gmail.com

ABSTRACT
Privacy preserving data mining is an important

issue nowadays for data mining. Since various organizations

and people are generating sensitive data or information these

days. They don’t want to share their sensitive data however

that data can be useful for data mining purpose. So, due to

privacy preserving mining that data can be mined usefully

without harming the privacy of that data. Privacy can be

preserved by applying encryption on database which is to be

mined because now the data is secure due to encryption. Code

profiling is a field in software engineering where we can

apply data mining to discover some knowledge so that it will

be useful in future development of software. In this work we

have applied privacy preserving mining in code profiling data

such as software metrics of various codes. Results of data

mining on actual and encrypted data are compared for

accuracy. We have also analyzed the results of privacy

preserving mining in code profiling data and found

interesting results.

Keywords-- Privacy preserving data mining, Code

Profiling, Correlation coefficient

I. INTRODUCTION

Software systems are mainly complex and hard to

conceptualize. This complexity, compounded by

complicated dependencies and different programming

practices, slows development and maintenance activities,

leads to faults and defects and finally increases the cost of

software [1]. Software engineering activities generate a

huge amount of data that, if harnessed properly through

data mining techniques, can help provide awareness into

many parts of software development processes. Privacy

preserving data mining is important because of the huge

amount of personal data generated nowadays. Privacy

preserving is an important issue in the data mining field.

Many applications are benefited from data sharing, mainly

data statistics and data mining. But the shared data may

contain private information of the owner of data. It has a

high risk of revealing data owner’s privacy [2]. Most of the

times people are not interested in sharing their private data,

they either not share their data or provide incorrect data.

Due to this problem in data collection phase, the results of

data mining techniques gets affected, which is based on

sufficient amounts of accurate data for producing

meaningful results or knowledge. Privacy preserving data

mining (PPDM) has become increasingly popular because

it allows sharing of private data for analysis purposes [3].

Code profiling is a form of dynamic program

analysis that measures, for example, the space (memory)

or time complexity of a program, the use of particular

instructions, or the frequency and duration of function

calls. Code profiling data of software can tell us about its

various attributes regarding its nature and performance and

is very important. It is a form of dynamic program analysis

that measures, for example, the space (memory) or time

complexity of a program, the use of particular instructions,

or the frequency and duration of function calls. There are

various software metrics which can come in code profiling

data. In software engineering, program profiling

or software profiling is a form of dynamic program

analysis (as opposed to static code analysis) or the

examination of a program’s behavior by gathered

information as the program executes. The usual purpose of

this analysis is to determine the sections of a program

needed to optimize - to increase its overall speed, decrease

its memory requirement or sometimes both.

In this work Code profiling data of a project or

code is very important to an organization. If it wants to

mine this data without risking its privacy then privacy

preserving mining is the best option for that purpose. We

have taken various software metrics as code profiling data.

Using this we create a model by learning existing

successful project’s software metrics and then for a new

project we can predict the value of an unknown metrics

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 25 Copyright © 2018. IJEMR. All Rights Reserved.

based on the generated model. This can help an

organization in 2 aspects-First, the privacy of the code

profiling data is preserved. Second, we can predict

unknown attribute for a new project using a model based

on successful projects and we can know the shortcomings

of the new project on that basis.

II. LITERATURE REVIEW

Jian Wang, Yongcheng Luo, Yan Zhao, and Jiajin

Le [3] have proposed a survey on privacy preserving data

mining. They have described several privacy preserving

data mining technologies clearly and then analyzed the

merits and shortcomings of these technologies. They have

discussed K-anonymity, the perturbation approach,

Cryptographic techniques. They have suggested to use the

Randomized Response techniques to solve the DTPD

problem and introduced a condensation approach, which

creates constrained clusters in the data set, and then

generates pseudo-data from the statistics of these clusters.

Pan Yang, Xiaolin Gui, Feng Tian, Jing Yao, and Jiancai

Lin [2] have proposed a privacy-preserving data

obfuscation scheme used in data statistics and data mining.

Yuriy Brun, and Michael D. Ernst [6] have introduced a

technique for finding latent code errors via machine

learning over program executions. Their technique

proposes a technique for identifying program properties

that indicate errors. This technique generates machine

learning models of program properties known to result

from errors, and applies these models to properties of

programs of code written to classify and rank properties

that may lead the user to errors. Quinn Taylor, and

Christophe Giraud-Carrier [9] have introduced applications

of data mining in software engineering. Since software

engineering activities are very complex, and the related

activities often produce a large number and variety of

artefacts, so that they are well-suited to data mining.

Recent years have seen an increase in the use of data

mining techniques on such artefacts with the aim of

analysing as well as improving software processes for a

given organisation or project.

Tu Honglei, Sun Wei, and Zhang Yanan [4] have

done a research on software metrics and software

complexity metrics. Their work respectively expounds

McCabe methods and C&K metric method for examples of

complexity metrics. They also introduced the software

metrics inclusive of the definition of metrics and the

history of this field; then brought up the complexity

metrics, such as McCabe complexity metrics and object

oriented metrics, with real world examples. C&K method

was brought up in 1994 by Chidamber and Kemerer.

Yuriy Brun, and Michael D. Ernst [5] have introduced a

technique for finding latent code errors via machine

learning over program executions. Their technique

proposes a technique for identifying program properties

that indicate errors. This technique generates machine

learning models of program properties known to result

from errors, and applies these models to properties of

programs of code written to classify and rank properties

that may lead the user to errors.

III. PROPOSED WORK

3.1 Proposed Algorithm

Input: Data Set, key1, key2.

Step 1. Generate Encrypted_Data Set using Encrypt (Data

Set, Key1, Key2).

Step 2. Apply k-means clustering (Data Set,

Encrypted_Data Set) and k-NN classification (Data Set,

Encrypted_Data Set).

Step 3. Compare the results of above two for correctness.

Step 4. Analyze mining results of the Data Set and

calculate Correlation_Coefficient (Data Set) between all

the attributes.

Step 5. If correlation coefficient weak Remove

attributes.

Step 5. Apply k-means clustering and k-NN classification

again to get better results.

Output: Data Set_Class, Correlation_Coefficient.

Fig 3.1 Step wise block diagram of the proposed method.

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 26 Copyright © 2018. IJEMR. All Rights Reserved.

IV. EXPERIMENT AND RESULTS

The proposed method is tested by code profiling data of 25

software metrics and code coverage for 140 java codes.

Source codes are not mined directly in this work because it

is very complex to do that, that’s why we indirectly mined

them using their code profiling data. Some of the java

codes are written by us and some are taken from open

source libraries. For each java code we have generated 26

code profiling attributes, hence the database consists of

140 instances, each for code profiling data of a particular

code. We have generated this data by code profiling tools

namely Eclipse Metrics and CodePro Analytix. The

outputs generated by code profiling tools are as shown

below for a single java code.

Fig 4.1 Software metrics values generated by Eclipse Metrics tool

Fig 4.2 Code Coverage generated by CodePro Analytix tool

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 27 Copyright © 2018. IJEMR. All Rights Reserved.

As we can see this output is in GUI form and

cannot be directly mined. So we had to convert it into

concrete data form, so we extracted the XML file of this

data. Through JAXP (Java API for XML Processing) we

have converted this GUI data into actual data form and

saved it into MS Excel sheets. The privacy preserving data

mining techniques are applied on this data. Software

metrics are generated for the codes written in java using

these two tools. These tools generate output in GUI

(Graphical User Interface) format. Then we have extracted

XML file of this GUI format and through JAXP we have

extracted the software metrics values from XML file.

These values are saved as database for the codes and then

mining is applied on this database.

For preserving the privacy of code profiling data,

we have encrypted this data using simple encryption

algorithm with 2 keys. Then k-means clustering is applied

to create 5 clusters, on encrypted data as well as on actual

data. Comparison is made between both data for

confirming that privacy is preserved and at the same time

mining results do not vary.

After generating these clusters we know the class of each

instance. Through 10-fold cross validation and k-NN

classifier we have compared the actual and encrypted

results of classification technique. Privacy is preserved by

encryption and mining results are also very good and

correct. There is not any variation between actual and

encrypted data results. We analyzed these clusters with the

properties of our data and found that the clusters are

majorly based on two attributes: Code Coverage and LOC.

We found that some clusters lie in unexpected clusters. For

example, we made inheritance related codes and all of

them are in same clusters except one of them. Due to this

unexpected behavior of data we calculated correlation

coefficient between all the attributes of our dataset. For all

instances we calculated correlation coefficient for various

important attributes, then we removed all those attributes

which are not correlated positively and again clustering is

performed for better results with more accuracy and

precision. On analyzing we found that on removing weakly

correlated data, we improved the clustering method but at

the same time classifier’s accuracy is decreased.

Fig 4.3 Comparison graph between clusters before vs. after

So, it can be concluded that by removing weakly

correlated attributes of code profiling data we can improve

the clustering but at the same time they are resulting into

decrease in accuracy of classifier.

V. CONCLUSION AND FUTURE

SCOPE

We have pre processed 140 java codes to generate

their code profiling data using code profiling tools such as,

CodePro Analytix and Eclipse Metrics. After that we have

converted this GUI data through JAXP in the actual data

form. That’s how we get our pre processed database on

which we have applied privacy preserving mining. For

preserving privacy of this data we have applied encryption

technique on this data and generated its encrypted form.

Then we have applied k-means clustering and 10-fold

cross validation to find accuracy of k-NN classifier on this

data through Euclidean distance and analyzed the results

thereafter.

Privacy preserving mining is still an emerging

research area in the field of software engineering. Various

organizations have enormous amount of sensitive data

about their projects which can be mined to get knowledge

for future improvement in this field. Software generates

huge amount of data which can be mined to discover

knowledge. So, different combinations of encryption

0 50 100 150

A

B

C

D

E

Number of Instances
(After)

Number of Instances
(Before)

www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962

 28 Copyright © 2018. IJEMR. All Rights Reserved.

methods and classification methods can be used to

improve the accuracy of privacy preserving mining in code

profiling data.

REFERENCES

[1] Quinn Taylor & Christophe Giraud-Carrier. (2010).

Applications of data mining in software engineering.

International Journal of Data Analysis Techniques and

Strategies, 2(3), 243-257.

[2] Antal, P., Fannes, G., Timmerman, D., Moreau, Y., &

De Moor, B. (2003). Bayesian applications of belief

networks and multilayer perceptrons for ovarian tumor

classification with rejection. Artificial Intelligence in

Medicine, 29, 39-60.

[3] Jian Wang, Yongcheng Luo, Yan Zhao, & Jiajin Le.

(2009). A survey on privacy preserving data mining. In 1
st

International Workshop on Database Technology and

Applications, 111-114.

[4] Tu Honglei, Sun Wei, & Zhang Yanan. (2009). The

research on software metrics and software complexity

metrics. In International Forum on Computer Science-

Technology and Applications, 131-136.

[5] Yuriy Brun & Michael D. Ernst. (2004). Finding latent

code errors via machine learning over program executions.

In 26
th

 International Conference on Software Engineering

(ICSE), 480-490.

[6] R. Mitchell & R. Chen. (2014). Adaptive intrusion

detection of malicious unmanned air vehicles using

behavior rule specifications. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 44(5), 593–604.

[7] A.V.Krishna Prasad & Dr. S.Rama Krishna. (2010).

Data mining for secure software engineering – Source

code management tool case study. International Journal of

Engineering Science and Technology, 2(7), 2667-2677.

