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ABSTRACT 
Dengue virus is one of virus that cause deadly disease 

was dengue fever. This virus was transmitted through bite of 

Aedes aegypti female mosquitoes that gain virus infected by 

taking food from infected human blood, then mosquitoes 

transmited pathogen to susceptible humans. Suppressed the 

spread and growth of dengue fever was important to avoid 

and prevent  the increase of dengue virus sufferer and 

casualties. This problem can be solved with studied 

important factors that affected the spread and equity of 

disease by sensitivity index. The purpose of this research 

were to modify mathematical model the spread of dengue 

fever be SEIRS-ASEI type, to determine of equilibrium 

point, to determined of basic reproduction number, stability 

analysis of equilibrium point, calculated sensitivity index,  to 

analyze sensitivity, and to simulate  numerical on 

modification model. Analysis of model obtained disease free 

equilibrium (DFE) point and endemic equilibrium point. The 

numerical simulation result had showed that DFE, stable if 

the basic reproduction number is less than one and endemic 

equilibrium point was  stable if the basic reproduction 

number is more than one.  
 

Keywords-- Basic Reproduction Number, Dengue Fever, 

Mathematical Model, Sensitivity Analysis 

 

 

I.     INTRODUCTION 
 

Dengue virus is a virus can causes death disease 

that is dengue fever. The virus is transmitted by the bite of 

female mosquitoes Aedes aegypti. that get viral infections 

by taking food from infected human blood, then transmit 

the pathogen to susceptible humans. There are four 

serotypes of the virus that cause dengue fever DEN1, 

DEN2, DEN3, and DEN4. A person is infected by one of 

the four serotypes, the will never be infected again by the 

same serotype, but a person can infection by another three 

serotypes in 12 weeks and then becomes more susceptible 

to developing DHF [6]. 

Suppressing the spread and growth of dengue fever 

important thing to avoid and prevent the increase of 

sufferer and casualties. This can be done by study the 

important factors affects of the spread and even 

distribution of the disease through the sensitivity index. 

Sensitivity index quantify how the basic reproduction 

number changes when response to the small shifts in the 

value of a parameter [4]. Sensitivity values can used to see 

which the parameters are important to measure accuracy 

and variations in which the parameters will transfer into 

   variation. 

Many research models have been done on 

mathematical, to study the transmission of dengue fever 

and sensitivity analysis. [7] develop a SIR-ASI model to 

perform sensitivity analysis of dengue epidemic models. 

[3] gives a mathematical model dynamics transmission of 

dengue fever model epidemic SITR-ASI. [1] elaborated 

the SIR-MSI model describe the dynamics of dengue 

fever.  

This research discusses modification of SIR-ASI 

model [7] by adding exposed subpopulations to human 

and mosquito populations, and assuming that humans will 

become susceptible again to three other serotypes. So that 

obtained the model of disease spread SEIRS-ASEI type. 

The purpose this research is modify mathematical model 

the spread dengue fever into SEIRS-ASEI type, determine 

equilibrium point, determine basic reproduction number, 

execute analysis stability of equilibrium point, numerates 

sensitivity index, undertake sensitivity analysis, and 

execute numerical simulation of the modified model. 

 

II.   MODIFICATION 

MATHEMATICAL MODEL 
 

The incubation period is the time when dengue 

virus enters the body (during transmission) until the onset 

of the disease. Dengue virus incubation period occurs after 

humans bitten by mosquitoes infected with dengue virus 

and mosquitoes are susceptible to bite humans infected 

with dengue virus. The length of the incubation period 

depends on the respiration of each body, generally ranges 

from 4 to 6 days. In this incubation period, population of 
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susceptible humans and population of susceptible 

mosquitoes are considered open to virus infection. If case 

of virus transmission in population of susceptible humans 

and population of susceptible mosquitoes, then susceptible 

humans and susceptible mosquitoes are grouped into 

exposed subpopulations [8]. Therefore, the SIR-ASI 

model formulated by Rodrigues et al. (2013) are further 

modified by adding the exposed stages in the human 

population and mosquito populations. 

The added assumption is that infected humans who 

recover because drug delivery will move to susceptible 

individuals. This is because medicine only heals and gives 

immunity to one serotype, nevertheless, not in the other 

three serotypes. This modification model is SEIRS-ASEI 

model, where the human population is divided into four 

classes, that are susceptible human (  ), exposed human 

(  ), infected human (  ), dan resistant human (  ). 

Mosquitoes are divided into three classes, that is  aquatic 

phase (  ), susceptible vector (  ), exposed vector (  ) 

dan infected vector (  ). 

Modification model is a modification of Rodrigues 

et al. (2013) by adding the    compartment is the exposed 

human population and    is the exposed mosquito 

population. Exposed human populations can experience 

natural death at    rate and exposed mosquito populations 

can die naturally at rates    . Furthermore, modification of 

the model is also done by adding the assumption that 

susceptible humans given the vaccine will have immunity 

to one serotype at a rate of  , after the immunity is 

reduced then the recovered human can return to being 

susceptible to the rate χ because immunity only applies to 

one serotype only. Schematically, the dispersion pattern of 

dengue fever type SEIRS-ASEI is illustrated in Figure 1, 

with ( ) representing individual displacements and (⇢) 

expressing the influence between compartments. The blue 

color shows the modification of Rodrigues et al. (2013).  

 

         

                
        

     
   

     
   

   
   

   
   

    

         

        

   
   

   
   

     
   

   
   

    

        

                

 

Figure 1  Diagram of Dengue Model Type SEIRS-ASEI 

 

Based on the compartment diagram in Figure 1, we 

obtain a system of differential equations for each 

compartment as follows: 
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with                is the total human 

population and                total population 

of mosquitoes. 

The transformations used for each compartment 
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population and mosquitoes can be written in the following 

differential equation system: 
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Table 1  Parameter of SEIRS-ASEI Model and its  

dimensions 

Paramater Description  
Parameter 

Value 
Unit  

C Average number of 

bites 

0.8* day-1 

   Average humans 

mortality 

1/ 

(71x365)* 

days 

    Transmission 

probability from    

0. 375* bite-1 

   Intrinsic incubation rate 1/5** time 

unit 

   Average healing period 1/3* day-1 

  The proportion of 

susceptible humans who 

were given the vaccine 

was immune 

0.1*** no 

units 

  Rate of loss of 

infection-acquired 

immunity 

0.1*** no 

units 

   Maturation rate from 

larvae to adult 

0.08* day-1 
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    Transmission 

probability from     

0. 375* bite-1 

   Natural mortality of 

larvae 

¼* day-1 

   Average lifespan of 

adult mosquitoes 

1/10* days 

   Extrinsic incubation 

rate 

1/10** time 

unit 

  Number of eggs at each 

deposit per capita 

6 day-1 

  Number of larvae per 

human 

3 no 

units 

   Total human population 480000 no 

units 

n   
  

 
1*** n/a 

Assumption***
) 

Source: Rodrigues. Et al.2013*
)
 and Newton and Reiter,             

1992**
) 

 

III.  RESULTS AND DISCUSSION 
 

The equilibrium point determination of the 

system in equation (2) has a positive solution region, with 

    ,     ,     ,     ,     , and      . 

The Equilibrium Points Determination 

The Disease Free Equilibrium (DFE) is a point 

where all individuals are suspectibles An endemic 

equilibrium is a point condition when the diseases there in 

human population.  

From the system of equation (2), obtained two 

equilibrium points are disease free equilibrium point (  ) 

and endemic equilibrium point (  )  as follows 
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Basic Reproduction Number 

The basic reproduction number is defined as the 

expected number of secondary infections produced by a 

single infected individual in a completely susceptible 

population [2]. The basic reproduction number is 

determined by using the next generation matrix   defined 

          

The matrix F and V for the DFE point (  ) were 

obtained based on the system of differential equations (2) 

as follows: 
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The basic reproduction number (  ) is largest 

nonnegative eigenvalue of  matrix       . Based on 

the system of equation (2),    is obtained as follows: 
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(     )(     )(      )  (     )(     )
. 

 

Stability Analysis of Equilibrium Point  
Stability analysis of disease free equilibrium point 

(  ) and endemic equilibrium point (  ) obtained the 

following conclusions. 

a. The disease free equilibrium point (  ) of the 

system of equation (2) is locally asymptotically 

stable if     , and unstable if     . 

b. The endemic equilibrium point (  ) of the system 

of equation (2) is stable if     , and unstable if 

    . 
Numerical Simulation 

Simulations were performed to demonstrate the 

stability characteristics for each equilibrium point using 

the Wolfram Mathematica
®
 11.0 software. The parameter 

values for the model is listed in Table 1, with initial 

conditions are        ,        ,        ,        , 

       ,        .  

Dynamic Population for Disease Free Equilibrium Point 

(  )  
Based on the parameter values listed in Table 1 , 

we obtained the basic reproduction number    
           and the disease free equilibrium point 

  ( 
                      )  

(                         ). Numerical simulation for 

the dynamics of  human population when      stable at 

the disease free equilibrium point     is presented in 

Figure 2.  

 

 
(a) 

0 50 100 150 200
0.25

0.30

0.35

0.40

0.45

0.50

Time Day

S
u

s
c
e
p

tib
le

H
u

m
a
n



www.ijemr.net ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962 

 

  49 Copyright © 2018. IJEMR. All Rights Reserved. 

 

 

(b) 

 

 

(c) 

Figure 2 Human population dynamics for disease free 

quilibrium point (  ) 
 

Simulation results show that the susceptible human 

population decreased to        , then increased to 

stable at point             (Figure 2a). Exposed 

human population experienced in population numbers 

until stablized at the point      (Figure 2b). The 

infected human population has decreased to become stable 

at the point       (Figure 2c).  

The numerical simulation for the population 

dynamic vector when      stable at the disease free 

equilibrium point   , is presented in Figure 3.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 3 Dynamics population vectors for disease free 

equilibrium point (  ) 
 

The simulation results showed that the susceptible 

mosquito population decreased from         then 

increased steadyly at the point             (Figure 

3a). The exposed mosquitoes population decreased to a 

stable condition at point       (Figure 3b). Infected 

mosquito population decreased until stable at point      

(Figure 3c).  

The simulation results presented in figures 2 and 3 

correspond to Theorem 1 The disease free equilibrium 

point of equation system  (2) is local asymptotic stablity  

if     . The disease free equilibrium point (  ) is 

unstable if     . 

Population Dynamics Endemic Equilibrium Point (  ) 

Based on the parameter values listed in Table 1, 

and the following parameters values       ,      , 

    which were assigmend to the different with the 

listed in Table 1. We obtained the basic reproduction 

numbers are              and endemic equilibrium 

point 

  ( 
                            )  

(                                             
       ). Numerical simulation for the dynamics of  

human population when      stable at the endemic 

equilibrium point    is presented in Figure 4.  
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(c) 

 

Figure 4 Human population dynamics for endemic 

equilibrium point (  ) 
 

The simulation result shows that susceptible human 

population is stable at point              (Figure 4a), 

exposed human  population is stable at point    
          (Figure 4b), and the infected human population 

is stable at point               (Figure 4c). 

The numerical simulation for population vector 

dynamics when       stable at the endemic equilibrium 

point   , is presented in Figure 5. 

 

 

(a) 

 
(b) 

 

 
(c) 

 

Figure 5  Population dynamics vectors for endemic 

equilibrium point (  ) 

The simulation results show that the susceptible 

mosquito population is stable at the point              

(Figure 5a), exposed mosquitoes population is stable at 

point            (Figure 5b), and infected mosquitoes 

population is stable at point            (Figure 5c). 

The simulation results presented in figures 4 and 5 

correspond to Theorem 2 The endemic equilibrium point 

of the system of equation (2) is stable if     . 

Sensitivity Analysis 

This task is intended to assess the effect of 

changing particular parameter values on   . The 

sensitivity index of the basic reproduction number of the 

   depending on the parameter 𝑝 is obtained by 
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The sensitivity index of each parameter of the 

model is presented in Table 2. 

Referring to Table 1 also the values of the 

parameters  ,  ,   for conditions without disease and 

endemic, two basic reproduction values are obtained as 

presented previously. The sensitivity index value that 

will be presented in Table 2 is the sensitivity index 

value for the parameters in conditions without disease 

and endemic. 

 

Table 2  The Sensitivity Index of Parameter 

Paramater 
Sensitivity Index Value 

          

C 2 2 

   -0.000115824 -0.0000515319 

    1 1 

   0.000192901 0.000192901 

    
     

     
  

     

     
 

  -0.499904 -0.666581 

  0.499711 0.666324 

   0.555556 0.555556 

    1 1 

   0 0 

   -2.05556 -2.05556 

   0.5 0.5 

n 1 1 

 

Based on Table 2, there are three group sensitivity 

index values, which are positive, negative and zero. The 

positive values indicate that the increase of that particular 

parameter will increase the values of   . The negative 

values indicate that the increase of that particular 

parameter will descrease the values of   . Whereas, the 

sensitivity index is zero meaning the parameter p has no  

effect on the value of   .  

In adddition, computer simulations was also 

conducted to show the effect of changing parameter 

values C,    ,   ,  , and   on   . 

The Effect of Average Daily Biting ( ) 

The daily rate of mosquito bites in humans is also 

an important factor to be observed. Numerical simulation 

results are shown in Figure 6 to see the effect of changing 
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parameter value   on exposed human population  and 

infected human population. 

 
Figure 6  Effect of    and    from variation   

 

Figure 6 shows that with an average daily bite 

increased, it will increase the number of exposed human 

populations (Figure 6a) and infected human population 

(Figure 6b). This shows that if the average mosquito bites 

infected in humans can not be pressed from 1.46068 per 

day then the disease will not disappear from the 

population. If parameter value   = 0.8 then the graph will 

be stable at the disease free equilibrium point. Whereas, if 

parameter   = 1.56129 then the graph will be stable at 

endemic equilibrium point. 

The Effect Transmission Probability from Infected 

Mosquito 

Transmission infected mosquitoes is transmission 

of virus from infected mosquitoes to susceptible humans. 

Numerical simulation results are shown in Figure 7 to see 

the effect of changing parameter value     on exposed 

human population  and infected human population. 

 
 

Figure 7  Effect of    and    from variation     

 

Figure 7 shows that the greater the transmission 

rate    occurs, will increase the number of exposed human 

populations (Figure 7a) and the number of infected 

populations. This indicates that if the transmission rate    

is not suppressed to less than 1.25015 per day then the 

disease will not disappear from the population. If 

parameter value     = 0.375 then the graph will be stable 

at the disease free equilibrium point. Whereas, if 

parameter    = 1.4283 then the graph will be stable at 

endemic equilibrium point. 

Effect of Healing Period from Dengue Fever 

The healing period observed in this study is the 

period of healing of dengue fever in the human 

population. Numerical simulation results are shown in 

Figure 8 to see the effect of changing parameter value    

on exposed human population  and infected human 

population. 

 

 
 

Figure 8  Effect of    and    of variation    

 

Figure 8 shows that the greater the healing period 

(  ), will decrease the exposed human population (Figure 

8a) and the number of infected human populations (Figure 

8b). This suggests that if medical treatment is done well to 

increase healing to 0.09996 per day, then the disease will 

still exist in the population. If parameter value    = 

0.33333 then the graph will be stable at the disease free 

equilibrium point. Whereas, if parameter    = 0.08749 

then the graph will be stable at equilibrium point endemic. 

The Effect of The Proportion of Humans Given The 

Vaccine Directly Immune 

The vaccine is an antigenic agent used to produce 

active immunity against a disease. Numerical simulation 

results are shown in Figure 9 to see the effect of changing 

parameter value   on exposed human population  and 

infected human population. 
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Figure 9  Effect of    and    of variation   

 

In Figure 9 it shows that the more human 

populations given the vaccine ( ), the lower the exposed 

human population (Figure 9a) and the infected human 

population (Figure 9b). This suggests that the more 

humans are vaccinated the system will stabilize at disease 

free equilibrium point.  

The Effect of Constant Rate of Immune Loss In 

Humans After Healing 

Immunity is a system of protection of outside 

biological influences by specialized cells and organs in an 

organism. Numerical simulation results are shown in 

Figure 10 to see the effect of changing parameter value   

on exposed human population  and infected human 

population. 

 
 

Figure 10  Effect of    and    of variation   

 

In Figure 10 it is seen that the greater the  , 

resulting in an expanding human population number so 

that the human population is infected will also increase.  

This suggests that if the level of constant immune loss in 

humans after recovery increases, exposed human 

populations and infected human populations will increase. 

If parameter value   = 0.1 then the graph will be stable at 

disease free equilibrium point. Whereas if parameter   

increases more than 0.1 then the graph will be stable at 

endemic equilibrium point. 

 

CONCLUSIONS  
 

In this research, modified mathematical model of 

dengue fever distribution by adding exposed stages on 

mosquito and human population and some assumptions as 

model parameters. The result of the analysis performed on 

the modified model obtained two equilibrium points, i.e 

equilibrium point without disease and endemic 

equilibrium point. Equilibrium point without disease 

locally asymptotic stable at condition     , whereas 

endemic equilibrium point stable at condition     . 

The numerical simulation results for       indicate that 

the local asymptotic population of humans and mosquitoes 

is stable at the equilibrium point without disease, whereas 

for      shows that the human and mosquito 

populations are stable at endemic equilibrium point. The 

sensitivity analysis performed on the parameters shows 

that each parameter has a different influence on    

depending on its sensitivity. The average daily bite 

parameters, healing rate from dengue fever, infected 

mosquito transmission rate, and loss of immunity in 

humans after healing when increased will increase the 

   value that affects the dengue epidemic. If vaccination 

is increased then it causes a decrease in    value so as to 

help suppress disease growth rate. 
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