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ABSTRACT 
This manuscript discusses the strong consistency 

and the asymptotic distribution of an estimator for a 

periodic component of the intensity function having a form 

of periodic function multiplied by power function trend of a 

non-homogeneous Poisson process by using a uniform 

kernel function. It is assumed that the period of the periodic 

component of intensity function is known. An estimator for 

the periodic component using only a single realization of a 

Poisson process observed at a certain interval has been 

constructed. This estimator has been proved to be strongly 

consistent if the length of the observation interval 

indefinitely expands. Computer simulation also showed the 

asymptotic normality of this estimator. 
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I.    INTRODUCTION 
 

The stochastic process is a process that describes 

the events or phenomena relating to the rules of 

probability. For example, this process can be used to 

create a model to predict the arrival of a customer to a 

service center, such as banks, post offices, bookstores, 

and supermarkets. Based on the time of occurrence, 

stochastic processes can be divided into two, i.e. the 

stochastic process with discrete time and stochastic 

processes with continuous time. In this paper, the 

discussion focuses only on one form of stochastic 

processes with continuous time, i.e. the Poisson process 

periodically. 

The periodic Poisson process is a non-

homogeneous Poisson process with an intensity function 

in the form of a periodic function. In the periodic Poisson 

process, there are two types of intensity functions, i.e. the 

global intensity function and the local intensity function. 

The global intensity function in periodic Poisson process 

states the average rate of the process in an interval of 

length towards the infinite, while the local intensity 

function states the rate of this process at a point.  

In general, the intensity function of a 

phenomenon that is modeled by a stochastic process is 

unknown, so a method is needed to predict the function. 

The estimation of the studied intensity function in this 

paper is the estimation of the local intensity function. 

Estimation of the local intensity function of a Poisson 

process at a point was approached by estimating the 

average number of occurrences of the Poisson process in 

the time intervals around the point. In order that 

observational data in different parts of different time 

intervals can be used to estimate the intensity function at 

a point, then it is necessary to assume that the intensity 

function is periodic (cyclic) with a period of the intensity 

function is known.  

One of the benefits of applying the Periodic 

Poisson process is to create a model of the customer 

arrival process to the post office. The local intensity 

function of the process states the rate of arrival of the 

customer at a given point in time. If the arrival rate of the 

customer between the previous period and the next period 

increases according to the power function to the time, 

then a more appropriate model to use is a periodic 

Poisson process with a trend component having form of a 

power function, so that in a long period of time this 

periodic model requires the intensity function 

accommodating a trend.  

         The weak consistency of the intensity function 

estimator having a form of periodic function multiplied 

by the trend of power function proposed in [1]. The 

estimation method used in [1] is a non-parametric 

method, so the distribution for the estimator intensity 

function is unknown. Hence, in this paper, a strong 

consistency was discussed and a simulation was 

conducted to see the asymptotic distribution of the 

estimator intensity function. 

 

II.    METHODOLOGY 
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In this paper, proving strong consistency and to 

simulate to see the asymptotic distribution of an estimator 

for periodic function multiplied by power function trend 

of a non-homogeneous Poisson process by using a 

uniform kernel function.The method that will be used to 

prove the strong convergence of this periodic component 

estimator is to use the concept of complete convergence 

and Lemma Borel-Cantelli. 

In addition, we also conducted a simulation to 

verify the asymptotic normality of the studied estimator 

of the periodic components of the intensity function. The 

simulation is done by generating the local intensity 

estimator at the finite observation interval      using 

software R. The method used to generate the realization 

of the Poisson process is the Monte Carlo method. 

Thus, the simulation algorithm performed is as 

follows: 

1. Generate the realization of the periodic Poisson 

process at the interval of observation       and 

period  . 

2. Generate the estimator at a given point         

using the optimal bandwidth   . 

3. Looking at the asymptotic distribution of the 

estimator. 

In addition, the Distribution Fit Test is done using 

Mathematica 11.0 software to determine the probability 

of the normal distribution of the intensity function 

estimator at a given sample point. 

 

III.     PRIOR APPROACH 
 

In [1], the estimator for the intensity function 

obtained as the product of a periodic function with the 

power function trend of a non-homogeneous Poisson 

process with uniform kernel function has been 

formulated. In addition, asymptotic approximations to the 

bias, variance, and mean squared error of this estimator 

have been established.  

Review Construction of The Estimator 

Let   be a non-homogeneous Poisson process 

on       having (unknown) locally integrable intensity 

function  . It is assumed that the intensity function to be a 

product of a periodic function with the power function 

trend, that is, the equation 

 (   (  
 (   (                                                              

holds true for each point         , where   
 (   is a 

periodic function with period     (known),     is the 

power function trend with       (known), and   

denotes the slope of the power function trend with    . 

It is not assumed that any (parametric) form of   
  except 

that it is periodic.  

Without loss of generality, the intensity function 

given in (1) can also be written as 

 (   (  (  ) 
                                                               

where   (      
 (   is also a periodic function with 

period  . Hence, for each point          and all    , 

with   denotes the set of integers, so 

  (        (                                                                      
By (2) and (3), the problem of estimating   at a 

given point          can be reduced to the problem 

estimating    at a given point        [1]. It is assumed 

throughout that   is a Lebesgue point of  , that is 

   
   

 

  
∫| (      (  |   

 

  

                                      

(Eg. see [4], p. 107-108), which automatically means that 

  is a Lebesgue point of    as well. 

The estimator of   (   at a given point         

has been formulated in [1] as follows: 

 ̂   (    
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with  (       denotes the number of occurrence in the 

interval       and    be a sequence of positive real 

numbers converging to zero, that is,  

             (6) 

 as    . In (5),    disebut bandwidth. 

Several Lemma which states the statistical 

properties of the estimator have been established in [1] 

and [2]as follows: 

Lemma 1 (Asymptotic unbiasedness) 

Suppose that the intensity function   satisfies (2) 

and is locally integrable. If    satisfies assumptions 

    , then  ( ̂   (  )    (   as    , provided   

is a Lebesgue point of   (  . In other words,  ̂   (   is 

the asymptotic unbiased estimator of   (  .  

The proof of Lemma 1 is referred to [1] 

Lemma 2 (Asymptotic approximation to the variance) 

Suppose that the intensity function   satisfies (2) 

and is locally integrable. If    satisfies assumptions 

     and   is a Lebesgue point of   (  , then 

   ( ̂   (   
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as     with  (         (∑
 

    (        
   

      ). 

The proof of Lemma 2 is referred to [1]. 

Lemma 3 (Asymptotic approximation to the bias) 

Suppose that the intensity function   satisfies (2) 

and is locally integrable. If    satisfies assumptions 

    ,    
   , and   has a finite second derivative 

  
  in s, then 

 ( ̂   (  )    (   
  
  (  

 
  
   (  

    (10) 

as    . 

The proof of Lemma 3 is referred to [2]. 

In addition, the optimal bandwidth that 

minimizes the asymptotic approximation to the mean 

squared error of the estimator has been established in [2], 

that is, 
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The proof of the optimal bandwidth is referred to [2]. 

 

IV.   OUR APPROACH 
 

Strong consistency of the estimator is implied by 

the complete convergence of that estimator. Hence, to 

prove the strong consistency of the estimator given in (5), 

then the complete convergence of the estimator needs to 

be proved. In addition, Lemma 1 and Lemma 2 in [1] are 

needed for proving the complete convergence of the 

estimator proposed in [1]. 

Theorem 1 (Complete Convergence of  ̂    (  ) 

Suppose that the intensity function   satisfies (2) 

and is locally integrable. If       ,         for 

the case      , and       for the case    , 

then 

 ̂   (  
 
   (   

as    , provided   is a Lebesgue point of   . In other 

words,  ̂   (   is complete convergence to   (   as 

   . 

Proof of Theorem 1 

To prove  ̂   (   converges completely to   (  , 

it will be shown that for all    , 

∑ (| ̂   (     (  |   )   

 

   

                                   

First, the probability in (14) can be written as 

 (| ̂   (     ̂   (     ̂   (     (  |    )          
By the triangle inequality, (15) can be written as 

 (| ̂   (     ̂   (  |    |  ̂   (     (  |)        

By Lemma 1, so that for all    ,    such that 

|  ̂   (     (  |  
 

 
,                                  (17) 

By Lemma 1 and Chebyshev inequality, the probability in 

(16) is equal to 

 (| ̂   (     ̂   (  |  
 

 
)  

    ( ̂   (  )

  
          

Hence, to prove (14), the following will be sufficient 

∑
    ( ̂   (  )

  
  

 

   

                                                     

By Lemma 2, the variance of  ̂   (   is verified 

into three cases, i.e. if      ,    , and    . The 

first case, i.e. if      . Since        for     

 , then based on (7) in Lemma 2 and series- , the 

following is obtained 
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The second case, i.e. if    . Since        for 

     , then based on (8) in Lemma 2 and series-p, 

the following is obtained 
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The third case, i.e. if    . Since        for     

 , then based on (9) in Lemma 2 and series-p, the 

following is obtained 

∑
    ( ̂   (  )
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with  (         (∑
 

   (              
   ). 

 

This completes the proof of Theorem 1. 

Corollary1 (Strong Consistency) 

Suppose that the intensity function   satisfies (2) 

and is locally integrable. If       ,         for 

the case      , and       for the case    , 

then 

 ̂   (  
    
→   (   

as    , provided   is a Lebesgue point of   . In other 

words,  ̂   (   is a strong consistent estimator of   (  . 

Proof of Corollary1 

To show that  ̂   (   is a strong consistent 

estimator of   (  , it suffices to show that [3],  

for all    , 

 (      | ̂   (     (  |   )   or              (23) 

 (      | ̂   (     (  |   )   .                            

(24) 

By Theorem 1, we have (14). Suppose that 

     {| ̂   (     (  |   }  
then by the Borel-Cantelli Lemma, it is obtained that 

 (                            Hence, 

 (    
   

  )   (    
   

{| ̂   (     (  |   })      

 

This completes the proof of Corollary 1. 

Based on Theorem 1 and Corollary 1, then 

 ̂   (   is a strong consistent estimator of   (  . 

Asymptotic Normality Simulation 

Construction of the estimator for periodic 

component of a periodic Poisson process intensity 

function is computationally carried out using Software R. 

In this simulation, generated data is being used as a 

realization of periodic Poisson process with a finite 
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observation interval length      . The method being used 

to generate the realization of the periodic Poisson process 

is the Monte Carlo Method. This simulation is aimed to 

verify the asymptotic normality estimator of the studied 

intensity function periodic component. 

The intensity function is being used in this 

simulation, that is, 

 (       (    (
   

 
))                                            

with    (    (
   

 
)) is the periodic component and    

is the power function trend component. The chosen 

parameter for the intensity function in (25) is    , 

   ,    , and      . Hence, the intensity function 

in (25) becomes 

 (       (   (
   

 
))                                            

Graphic illustration intensity function of  (  in (26) and 

its estimation value is presented in Figure 1 and Figure 2. 

Figure 1: The intensity function  (   and itsestimation 

value in the interval of observation          
 

Figure 2: The intensity function  (   and its estimation 

value in the interval of observation          
 

Based on Figure 1 and Figure 2, it can be 

concluded that the estimation value of the intensity 

function  (  at the observation interval          is close 

to the intensity function real value compared to the 

observation interval         . So that the longer the 

observation interval length being used, then the better 

estimation will be obtained.  

Asymptotic distribution of the estimator is 

distribution being used to approach a finite sample 

distribution. This simulation will show that the studied 

estimator asymptotic distribution is close to normal 

distribution. To see the asymptotic distribution, first we 

will estimate the studied intensity function. In estimating 

the intensity function is being used two sample points i.e. 

   (presenting   (   that is small) and    

(presenting   (   that is big). The bandwidth being used 

to estimating the intensity function is the optimal 

bandwidth for the case       proposed in [2].The 

optimal bandwidth is 

   (
    (  

 (    (  
  (    

)

 

 

 
 (    

   

The result of asymptotic normality simulation 

for  ̂   (   is presented in Figure 3 and Figure 4.  

 

 
Figure 3: Estimator asymptotic normalitygraphic with 

realization in the interval           point        (   
         and                    

 

 
Figure 4: Estimator asymptotic normality graphic with 

realization in the interval          point        (   
         and                   

 

Based on Figure 3 and Figure 4, the studied 

estimator intensity function is close to normality line. 

Besides, the result of Distribution Fit Test using software 

Mathematica 11.0 showed that the estimator at point 

    and     normally distributed with the probability 

of 0.809339 and 0.844338, respectively. Hence, the 

studied estimator asymptotic distribution is indicated to 

be closed to the normal distribution. 

 

V.    CONCLUSION 
 

In this paper, we have proved strong consistency 

properties for the estimator which proposed in [1] if the 

length of the observation interval indefinitely expands. 

The proofs were presented in Theorem 1 and Corollary 1. 

Based on the result of the simulation, there is an 
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indication that the asymptotic distribution of the estimator 

which proposed in [1] is approaching thenormal 

distribution.  
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