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ABSTRACT 
In this article, the mathematical model for dengue 

disease transmission involving the aquatic life cycle was 

studied. Further, the equilibrium points of the 

mathematical model developed were determined and the 

stability criteria were also derived. The criteria above 

mentioned were dependent on the basic reproduction 

number which was defined as the expected value of 

susceptible individual got infected caused by a single 

infected individual. The results show that the disease-free 

equilibrium is locally asymptotically stable when      

and the endemic equilibrium is locally asymptotically 

stable when     . Numerical simulations are provided to 

show the dynamics of both human and mosquito 

populations upon changes of particular parameter values. 
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I. INTRODUCTION 
 

Dengue is a disease transmitted by infected 

Aedes aegypti mosquito through its bites carrying one of 

the four dengue virus serotypes called DEN-1, DEN-2, 

DEN-3 and DEN-4 [1, 2]. The disease transmission 

requires short period of time to spread and may cause 

death rapidly. 

In this article, the transmission process was 

studied through mathematical models. Esteva [3] 

developed mathematical model of dengue transmission 

considering two different type of dengue viruses. 

Derouich et al. [4] formulated a mathematical model 

with a succession of two epidemics caused by two 

different viruses. Nuraini et al. [5] showed the internal 

process of dengue virus transmission in the human body. 

Pongsumpun [6] modeled the transmission of dengue 

with and without considering the extrinsic incubation 

period. Based on [6], Tumilaar et al. proposed a 

mathematical model of the transmission of dengue 

disease with intrinsic incubation, combination of 

intrinsic and extrinsic incubation to the dynamics of the 

transmission of disease dengue [7].  

In this article, the mathematical model as 

described in [7] was modified considering the exposed 

stage both in human and the mosquitoes life cycle. Also, 

the mosquitoes aquatic life cycle was considered in this 

article since the process plays as important rule on the 

disease spread [8]. The latest component was found to 

the absent in the models developed in [6] and [7]. 

 

II. MATHEMATICAL MODEL 
 

The human populations are divided into four 

compartments. These compartments include: susceptible, 

(  ), exposed (  ), infected, (  ), and recovered, (  ). 

The populationof  mosquito is divided into four 

compartments namely aquatic mosquitoes (  ), 

susceptible (  ), exposed (  ), and infected (   . Here, 

we assumed that the total human populations remain 

constant because the birth rate equal to the mortality 

rate. The daily mosquito bites demoted as   was 

assumed not infected even from infected mosquitoes. It 

was also assumed that infected mosquitoes never get 

recovered, while the recovered humans are still posible 

to be susceptible and be infected. 

The following are the parameters that exist in 

the model:    is the total number of human population, 

   is the total number of mosquitoes population,    is 

human mortality rate,    is the mortality rate of adult 

mosquito,    is the average aquatic mortality rate,     is 

the birth rate of the human population,    is the average 

aquatic transition rate,   is the mosquito carrying 

capacity,   is the fraction of adult mosquito hatched rom 

all eggs, with      ,     is the average oviposition, 

    is the transmission probability from infected humans 

to susceptible mosquitoes,     is the transmission 

probability from infected mosquitoes to susceptible 

humans. We assume that the populations of exposed 

humans and mosquitoes become infectious at a rate    

and   , respectively. 
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The compartment diagram for modifications 

model is shown in  Figure 1.  

 
Figure 1: The diagram of modified dengue transmission 

model (adopted from [7] and [8]). 

 

Model of dengue transmission in Figure 1 

formulated in a system of differential equations as 

follows:  
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with  

            and            . 

Furthermore, we have proven that the system 

(1) is positive region solution, by following Lemma 2.1. 

Lemma 2.1 

The set 

  {                             
        

                               } is the 

positive region solution.  
 

III. ANALYSIS MODEL 
 

The analysis of the equilibrium points on the 

system (1) were obtained two types of equilibrium point, 

namely the disease-free equilibrium and endemic 

equilibrium.  

3.1 The disease-free equilibrium    

 The disease-free equilibrium    of the system 

(1) is given by 
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 To analyze the stability of the equilibrium 

points, we need to compute the basic reproduction 

number of model,   . Basic reproduction number,   , is 

the expected value of susceptible individual got infected 

cause by a single infected individual. We calculated the 

basic reproduction number by using the next generation 

operator approach by Van Den Driessche and Watmough 

[9]. The next generation matrix, G, is defined as: 
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 The basic reproduction number is the largest 

eigenvalue of       , thus we get 

   √
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     (3) 

or 
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with 

    
     

         
   (5) 

              The value of      was set as necessary 

condition in order to obtain the     are not imaginary 

value. 

Theorem 3.1 

The DFE    of the system (1) is locally 

asymptotically stable if and only if     . 
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Proof. To determine the stability of   , the Jacobian 

matrix of DFE   ,     
 given 
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and the characteristic polynomial of the matriks    
are 

determined by  is        
    is 

                                     
   

     
              (6) 

Thus, there are eight eigenvalues and four of 

them are negative, that are 

          , 

              

        
              

 
,  

           .   

Meanwhile the four other eigenvalues were 

obtained by solving equation below 

         
      

                  (7) 

where 

                    , 

                                
                        
                     

                             
                                
            , 

                              ;    
   

  (8) 

The roots of the equation (7) are the other 

eigenvalues namely   ,   ,    and   . Based on the 

properties of the roots of the equation (7), we gained that 

the roots of equation (7) satisfy the following equations 

[10]. 

              , 

                                 , 

                       , 

               (9) 

As shown,     , then  

                (10) 

This denote one of them must be negative, let 

    . Furthermore, to check the equilibrium stability, 

we just need to notice the negativity of   ,   , and   . 

In order to fulfill the stability criteria    was 

set as      which means that     (as in 4). Based 

on the equation (8), if     then       we obtain 

             (11) 

The condition (11) is satiesfied only if        and 

      , or         and       . 

Because      then    that satisfy the conditions (9) is 

    . 

As shown,      , then we obtain 

                       

or 

                    .     (12) 

The inequality (12) is satisfied if               and 

        . 

As assumed before,      . Also, it was showed that 

    . Thus, we get 

          and          (13) 

The condition (13) can be satisfied if and only if  

     and     . Thus, we know that all of the 

eigenvalue are negative. Therefore, if     , then the 

disease-free equilibrium    of the system (1) is locally 

asymptotically stable.    

     

3.2 The Endemic Equilibrium 

 The endemic equilibrium of the system (1) is 

given by 
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Theorem 3.2 

If     , then endemic equilibrium    is 

locally asymptotically stable. 

 

Proof. The Jacobian matrix at     of the system (1) is 

given by 
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The characteristic polynomial of the matriks    
 

are determined by        
    is 

              (                   

                                      

            (                  ))   .  

The two eigenvalues are obtained           , 

             and the six other eigenvalues were 

obtained by solving characteristics equations following: 
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Based on the Routh-Hurwitz criterion [11], the equation 

(15) of the endemic equilibrium    is stable if fulfill the 

stability criterion below 

    ,     ,     ,     ,     ,      and 
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Noted that if     , then      ,     ,     , 

    ,     , and     . Further,               
  
          

   
          

   
          

    
       

      
          

   
    

   
    

       
  

   
       

           
    

   
    if     . Thus, 

if      then the condition (16) is satiesfied. 

Therefore, by Routh-Hurwitz criterion the endemic 

equilibrium    for system (1) is locally asymtotically 

stable if           

 

 
Figure 2: Dynamics of human populations and the population dynamics of mosquitoes for the disease-free equilibrium 

 

IV.  NUMERICAL SIMULATION 
 

Simulations were to justify the stability 

properties of the equilibrium points based on the 

theorem in section 3 and to see the influence of 

parameter variations in dynamics system. The initial 

value of             ,         ,         , 
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       ,              ,              ,  

        and        .  

4.1 The population dynamics of human and mosquito 

for the disease-free equilibrium 

The parameters used in this simulation for the 

disease-free equilibrium were        ,        , 

   
 

 
,        ,        ,           , 

       ,   
 

 
,       ,           ,         , 

        ,          ,      ,      ,       

(taken from [8] and [12] ). Based on the parameters, we 

acquired the basic reproduction number    
           and the disease free equilibrium 

     
    

    
    

    
    

    
    

   
                                          . 

               The simulation results for the human 

population and the mosquito population for the disease-

free equilibrium. 

In Figure 2a it can be seen that the susceptible 

humans population rapidly decrease in the begining of 

time simulation, then the population increase with time 

and finally approaching the disease-free equilibrium. 

The exposed humans population rapidly decrease in the 

begining of time simulation, and continuously decrease 

until to the end of simulation time (Figure 2b). The 

infected humans and the recovery humans population, 

rapidly increase in the begining at time simulation, then 

the population decrease with time and finally 

approaching the disease-free equilibrium (Figure 2c-2d).  

The mosquitoes aquatic population in short time 

decrease in the begining at time 

simulation and then approaching the disease-free 

equilibrium (Figure 2e). The susceptible mosquitoes 

initially increase in the begining at time simulation 

and then approaching the disease-free equilibrium 

(Figure 2f). The exposed mosquitoes and infected  

mosquitoes population initially increase, but the 

population increase with time and finally approaching 

the disease-free equilibrium (Figure 2g-2h). The results 

are consistent with Theorem 3.1 that the disease-free 

equilibrium  
     

    
    

    
    

    
    

    
  

                                            

is locally asymptotic stable if       
4.2 The population dynamics of human and mosquito 

for the endemic equilibrium  

The parameters used in this simulation for the 

endemic equilibrium were        ,        ,    
 

 
,        ,       ,           ,        ,   

 

 
,       ,           ,         ,         , 

         ,      ,      ,       (taken from 

[8] and [12]). Based on the parameters then acquired the 

basic reproduction number              and the 

point remains endemic 

      
     

     
     

     
     

     
     

    

                                              
The simulation results for the human and mosquito 

populations for the endemic equilibrium are shown  in 

Figure 3. 

 

 
Figure 3:  The dynamics of human populations and the population dynamics of mosquitoes for the endemic equilibrium 

 

             The susceptible humans population initially 

increase in short time, then occur fluctuations and finally 

approaching the endemic equilibrium (Figure 3a). The 

exposed humans population initially decrease but after 

certain time occur fluctuations, then approaching the 

endemic equilibrium (Figure 3b). Similarly occur to the 

infected humans population and the recovered humans 
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population, the two populations occur fluctuations, then 

approaching the endemic equilibrium (Figure 3c-3d). 

The mosquitoes aquatic population in the beginning of 

simulations decrease until approaching the endemic 

equilibrium (Figure 3e). Similarly occur to the 

susceptible mosquitoes population, the susceptible 

mosquitoes population initially decrease, then 

approaching the endemic equilibrium (Figure 3f). While 

the infected mosquitoes and exposed mosquitoes 

population, initially increased and occur fluctuations, 

then finally approaching the endemic equilibrium 

(Figure 3g-3f). The results are consistent with Theorem 

3.1 that the endemic equilibrium  

      
     

     
     

     
     

     
     

    

                                              
                            

is locally asymptotic stable if       
4.3 The influence of the number of eggs produced from 

each compartment per capita      
There are three variations of parameter    was 

observed, taken from interval [0-11.2] from [8], and the 

values of other parameters for the diesease-free 

equilbrium and the endemic equilibrium is fixed. Figure 

4 and 5 shows the effects that occur if the number of 

eggs produced decreased. 

 

Figure 4:   The effect of     to the infected humans population, the mosquitoes aquatic and the infected mosquitoes for the 

diesease-free equilibrium 

 
 

Figure 5:   The effect of     to the infected humans population, the mosquitoes aquatic and the infected mosquitoes for the 

endemic equilibrium 

 
 

                 Based on Figure 4a and 5a we can see that 

decreasing of the number of eggs produced causes the 

number of the infected humans is on the wane. The same 

thing occurs to the mosquitoes aquatic (Figure 4b and 

5b) and the infected mosquitoes (Figure 4c and 5c). This 

implies that decreasing of the number of eggs produced  

helping reduce the rate of spread of dengue disease. 

4.4 Effect of the mortality rate from mosquitoes aquatic 

     

               There are three variations of parameter   was 

observed taken from interval [0.01-0.47] from [8], and 

the values of other parameters for the diesease-free 

equilbrium and the endemic equilibrium is fixed. Figure 

6 and 7 shows the effects that occur if the mortality rate 

of mosquitoes increased. 

 

Figure 6:  The effect of     to the infected humans population, the mosquitoes aquatic and the infected mosquitoes for the 

desease-free equilibrium 

 
Figure 7:   The effect of     to the infected humans population, the mosquitoes aquatic and the infected mosquitoes for the 

endemic equilibrium 
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             Based on Figure 6a we can see that increasing of 

the mortality rate from mosquitoes aquatic causes the 

number of the infected humans for the diesease-free 

equilibrium is not too different. While the number of the 

infected humans for the endemic equilibrium occur 

change the number of population is decreasing (Figure 

7a). The mosquitoes aquatic (Figure 6b and 7b) and the 

infected mosquitoes (Figure 6c and 7c) population is 

decreasing. This implies that increasing of the mortality 

rate from mosquitoes aquatic helping reduce the rate of 

spread of dengue disease. 

 

V.  CONCLUSION 
 

              The mathematical model involving the 

transmission of dengue disease with aquatic life cycles 

was considered to describe the transmission of dengue 

disease.  The mathematical model of dengue disease 

involving aquatic life cycle has two equilibrium points, 

then namely the disease-free equilibrium and the 

endemic equilibrium. If       the disease-free 

equilibrium    is locally asymptotically stable. The 

endemic equilibrium    is locally asymptotically stable 

if     . The decrease of    and the increase of    can 

help reduce the rate of disease transmission in the 

population so that there is no outbreak in the population. 
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