

Volume-7, Issue-1, January-February 2017

International Journal of Engineering and Management Research

Page Number: 430-438

A Twin Result on Positive Solutions for Boundary Value Problems

Mangalagowri.R

Lecturer/Mathematics, NPA Centenary Polytechnic College, Near Sakthi Hills, Kotagiri, The Nilgiris, INDIA

mgowrinpa@gmail.com

ABSTRACT

In this chapter, we generate a twin result on positive solutions for boundary value problems.

Keywords-- Value, Boundary, Theorem

I. INTRODUCTION

We present the following assumptions and lemmas that are used for proving our main theorem.

For a constant
$$\delta \in \left(0, \frac{1}{2}\right)$$
,

let

$$\sigma = \min\{\xi w(t) : \delta \le t \le 1 - \delta\},\,$$

$$l = ||w||$$
,

$$P = \max_{0 \le t \le 1} \int_{S}^{1-\delta} G(t,s)h(s)ds,$$

and

$$K_1 = \{x \in K : x(t) \ge \sigma ||x||, \delta \le t \le 1 - \delta\}.$$

LEMMA: B

Suppose (A1) holds, for $v(t) \in C(\lceil 0,1 \rceil)$, $v(t) \ge 0$, then the problem

$$x^{(n)}(t) + v(t) = 0,$$
 $\rightarrow (1.1)$

with the boundary conditions (1.2) - (1.4) has the unique solution

$$x(t) = \int_{0}^{1} G(t,s)v(s)ds, t \in [0,1].$$
 $\to (1.2)$

LEMMA: C

For
$$(t,s) \in [0,1] \times [0,1]$$
, we have

$$g(t,s) \le Lg(t,t),$$

$$g(t,s) \le Lg(s,s),$$

$$(1.3)$$

where $L \ge 1$ is given by

$$L = \max\left\{1, \frac{\beta_1}{\beta_1 + \alpha_1}, \frac{\beta_2}{\beta_2 + \alpha_2}\right\}.$$
 $\rightarrow (1.4)$

LEMMA: D

If X(t) is a solution of boundary value problem (1.1) – (1.4), then we have

$$x(t) \ge \xi ||x|| w(t) > 0, t \in (0,1)$$
 $\to (1.5)$

where

$$w(t) = \int_{0}^{1} G(t,s)h(s)ds \qquad \text{and} \qquad$$

$$\xi = \frac{\rho}{L^2 \|h\| (\beta_1 + \alpha_1)(\beta_2 + \alpha_2)} > 0.$$

PROOF:

Obviously, W(t) is the unique solution of Equ. (4.1) with boundary conditions (1.2) – (1.4) for $V(t) \equiv h(t)$.

Then from lemma (B) and Equ. (1.1.1) and Equ. (1.3),

we have

$$x^{(n-2)}(t) = \int_{0}^{1} g(t,s)v(s)ds$$

$$= \begin{cases} \int_{0}^{1} \frac{1}{\rho} (\alpha_{1}t + \beta_{1}) [\alpha_{2}(1-s) + \beta_{2}]v(s)ds, t \leq s \\ \int_{0}^{1} \frac{1}{\rho} (\alpha_{1}s + \beta_{1}) [\alpha_{2}(1-t) + \beta_{2}]v(s)ds, s \leq t \end{cases}$$

$$\geq \begin{cases} \frac{\alpha_{1}t+\beta_{1}}{\alpha_{1}+\beta_{1}}\int_{0}^{1}\frac{1}{\rho}(\alpha_{1}s+\beta_{1})\left[\alpha_{2}(1-s)+\beta_{2}\right]v(s)ds, & t \leq s \\ \\ \frac{\alpha_{2}(1-t)+\beta_{2}}{\alpha_{2}+\beta_{2}}\int_{0}^{1}\frac{1}{\rho}(\alpha_{1}s+\beta_{1})\left[\alpha_{2}(1-s)+\beta_{2}\right]v(s)ds, & s \leq t \end{cases}$$

$$\geq \frac{\left(\alpha_1 t + \beta_1\right)\left[\alpha_2(1-t) + \beta_2\right]}{\left(\beta_1 + \alpha_1\right)\left(\beta_2 + \alpha_2\right)} \int_0^1 g(s,s)v(s)ds$$

$$\geq \frac{\|x\|}{L(\beta_1 + \alpha_1)(\beta_2 + \alpha_2)} (\alpha_1 t + \beta_1) [\alpha_2 (1 - t) + \beta_2]$$

$$= \frac{\rho \cdot ||x||}{L(\beta_1 + \alpha_1)(\beta_2 + \alpha_2)} g(t,t)$$

$$\geq \frac{\rho \cdot ||x||}{L^2(\beta_1 + \alpha_1)(\beta_2 + \alpha_2)} \int_0^1 g(t, s) ds$$

$$\geq \frac{\rho . \|x\|}{L^2 \|h\| (\beta_1 + \alpha_1) (\beta_2 + \alpha_2)} \int_0^1 g(t, s) h(s) ds$$

$$=\xi \|x\| w^{(n-2)}(t)$$

Since x(t) and w(t) satisfy the boundary condition (1.2), then we have

$$x(t) = \int_{0}^{t} \int_{0}^{\tau_{n-3}} \dots \int_{0}^{\tau_{1}} x^{(n-2)}(s) ds d\tau_{1} \dots d\tau_{n-3}$$

$$\geq \int_{0}^{t} \int_{0}^{\tau_{n-3}} \dots \int_{0}^{\tau_{1}} \left[\xi \|x\| w^{(n-2)}(s) \right] ds d\tau_{1} \dots d\tau_{n-3}$$

$$= \xi \|x\| w(t)$$

Therefore $x(t) \ge \xi ||x|| w(t) > 0$, for 0 < t < 1.

Hence the proof of the lemma.

THEOREM: 1.1

Assume that there exist some constants $d \ge 0$, $b_1 > a_1, a_2 \ge 0$, and $R > \sigma R > r + b_1 dl > r > M > 0$ such that

(i)
$$f(t,x) \ge -d \text{ for } 0 \le t \le 1, M_1 w(t) \le x \le R,$$
 where
$$M_1 = \max\{M, r\xi\};$$

(ii)
$$0 < \frac{M}{\min_{0 \le t \le 1} f(t, Mw(t))} = a_1 < b_1 = \frac{r}{N \left[d + \max_{\substack{0 \le t \le 1 \\ Mw(t) \le x \le r}} f(t, x) \right]};$$

(iii)
$$0 < \frac{R}{P \left[d + \min_{\substack{\delta \le t \le 1 - \delta \\ \sigma R - b_1 dl \le x \le R}} f(t, x) \right]} = a_2.$$

Then boundary value problem (1.1) – (1.4) has at least twin positive solutions y_1 and y_2 satisfying $0 < Mw(t) \le y_1(t), \|y_1\| < r$, and $r \le \|y_2\| < R$, 0 < t < 1, \rightarrow (1.6)

provided that $\max\{a_1, a_2\} < \lambda < b_1$.

PROOF:

We define the auxiliary functions F(t,x) and $F^*(t,x)$ as

$$F(t,x) = \begin{cases} f(t,x), & x \ge Mw(t), \\ f(t,Mw(t)), & x < Mw(t) \end{cases}$$
 and
$$F^*(t,x) = d + F(t,x - \lambda dw(t)). \longrightarrow (1.7)$$

Then we have

$$\min_{0 \le t \le 1} F^*(t, Mw(t)) = \min_{0 \le t \le 1} \left[d + F(t, Mw(t) - \lambda dw(t)) \right]$$
$$= \min_{0 \le t \le 1} \left[d + F(t, Mw(t)) \right] \rightarrow (1.8)$$
$$\geq \min_{0 \le t \le 1} F(t, Mw(t))$$

$$= \min_{0 \le t \le 1} f(t, Mw(t))$$

Therefore

$$\min_{0 \le t \le 1} F^*(t, Mw(t)) = \min_{0 \le t \le 1} f(t, Mw(t)),$$

$$\max \left\{ F^*(t, x) \colon 0 \le t \le 1, \ Mw(t) \le x \le r \right\}$$

$$= \max \left\{ d + F(t, x - \lambda dw(t)) \colon 0 \le t \le 1, \ Mw(t) \le x \le r \right\}$$

$$= \max \left\{ d + F(t, x) \colon 0 \le t \le 1, \ Mw(t) - \lambda dw(t) \le x \le r - \lambda dw(t) \right\}$$

$$\le \max \left\{ d + F(t, x) \colon 0 \le t \le 1, \ Mw(t) \le x \le r \right\}$$

$$= \max \left\{ d + f(t, x) \colon 0 \le t \le 1, \ Mw(t) \le x \le r \right\}$$

Therefore

$$\max \{F^*(t,x): \ 0 \le t \le 1, \ Mw(t) \le x \le r\}$$

$$= \max \{d + f(t,x): \ 0 \le t \le 1, \ Mw(t) \le x \le r\} \longrightarrow (1.9)$$

and

$$\min \left\{ F^*(t,x) \colon \delta \leq t \leq 1 - \delta, \ \sigma R \leq x \leq R \right\}$$

$$= \min \left\{ d + F(t,x - \lambda dw(t)) \colon \delta \leq t \leq 1 - \delta, \ \sigma R \leq x \leq R \right\}$$

$$= \min \left\{ d + F(t,x) \colon \delta \leq t \leq 1 - \delta, \ \sigma R - \lambda dw(t) \leq x \leq R - \lambda dw(t) \right\}$$

$$\geq \min \left\{ d + f(t,x) \colon \delta \leq t \leq 1 - \delta, \ \sigma R - b_1 dl \leq x \leq R \right\}$$

Therefore

$$\min \{ F^*(t,x) \colon \delta \le t \le 1 - \delta, \quad \sigma \mathbf{R} \le x \le R \}$$

$$\ge \min \{ d + f(t,x) \colon \delta \le t \le 1 - \delta, \quad \sigma \mathbf{R} - b_1 dl \le x \le R \} \to (1.10)$$

From condition (ii) and inequalities (4.8) and (4.9), we have

$$0 < \frac{M}{\min_{\alpha \in \Pi} F^*(t, Mw(t))} \le a_1$$

$$< b_1 \le \frac{r}{N \max \{F^*(t,x): 0 \le t \le 1, Mw(t) \le x \le r\}}.$$

Then from Theorem (3.2.2) implies the equation

$$x^{(n)}(t) + \lambda h(t)F^*(t,x) = 0,$$
 $\rightarrow (1.11)$

with the boundary conditions (1.2) – (1.4) has a solution X_1 , such that

$$0 < Mw(t) \le x_1(t)$$
, $0 < t < 1$ and $||x_1|| < r$ when $a_1 < \lambda < b_1$.

Let $F^{**}(t,x) = \max\{F^*(t,x),0\}$ and consider the equation

$$x^{(n)}(t) + \lambda h(t)F^{**}(t,x) = 0,$$
 $\rightarrow (1.12)$

with the boundary conditions (1.2) - (1.4).

It is clear that a function $\mathcal{X}=\mathcal{X}(t)$ is a positive solution of Equ. (1.12) with (1.2) – (1.4) if \mathcal{X} is a fixed point of the mapping $T:K_1 \longrightarrow K_1$, where T is defined by

$$(Tx)(t) = \lambda \int_{0}^{1} G(t,s)h(s)F^{**}(t,x(s))ds, x \in K_{1}.$$

Here T is a completely continuous operator.

Let

$$K_r^* = \{ y \in K_1 : ||y|| < r \},$$

$$K_R^* = \{ y \in K_1 : ||y|| = R \}.$$

Suppose $a_2 < \lambda < b_1$, for $x \in \partial K_r^*$,

set

$$J = \{t \in [0,1]: F^*(t,x(t)) \ge 0\}.$$

Then

$$(Tx)^{(n-2)}(t) = \lambda \int_{0}^{1} g(t,s)h(s)F^{**}(s,x(s))ds$$

$$=\lambda \int_{I} g(t,s)h(s)F^{*}(s,x(s))ds$$

$$\langle b_1 \int_J g(t,s)h(s) \max \left\{ F^*(s,x) : 0 \le s \le 1, x \le r \right\} ds$$

$$= b_1 \int_J g(t,s)h(s) \times \max \left\{ F^*(s,x) : 0 \le s \le 1, Mw(s) \le x \le r \right\} ds$$

$$\le b_1 \int_J g(t,s)h(s) \times \max \left\{ d + F(s,x) : 0 \le s \le 1, Mw(s) \le x \le r \right\} ds$$

$$\le b_1 \frac{r}{b_1 N} \int_J g(t,s)h(s) ds$$

$$= \frac{r}{N} \int_J g(t,s)h(s) ds .$$

Since (Tx)(t) satisfy the boundary condition (1.2), then

$$(Ty)(t) \leq \int_{0}^{t} \int_{0}^{\tau_{n-3}} \dots \int_{0}^{\tau_{1}} \left[\frac{r}{N} \int_{J} g(v, s) h(s) ds \right] dv d\tau_{1} \dots d\tau_{n-3}$$

$$= \frac{r}{N} \int_{J} G(t, s) h(s) ds$$

$$\leq r$$

$$= \|x\|.$$

Then we obtain that ||Tx|| < ||x||, for $x \in \partial K_r^*$.

For $x \in \partial K_R^*$, using condition (iii) and inequality (1.10),

we have

$$(Tx)^{(n-2)}(t) = \lambda \int_{0}^{1} g(t,s)h(s)F^{**}(s,x(s))ds$$

$$> a_{2} \int_{\delta}^{1-\delta} g(t,s)h(s)F^{**}(s,x(s))ds$$

$$\ge a_{2} \int_{\delta}^{1-\delta} g(t,s)h(s) \times \min\{F^{**}(s,x): \delta \le s \le 1-\delta, \sigma R \le x \le R\}ds$$

$$\ge a_{2} \frac{R}{a_{2}P} \int_{\delta}^{1-\delta} g(t,s)h(s)ds$$

$$\geq \frac{R}{P} \int_{\delta}^{1-\delta} g(t,s)h(s)ds$$

Similarly, we have

$$(Ty)(t) \ge R = ||x||$$
.

Then

$$||Tx|| \ge ||x||$$
, for $x \in \partial K_R^*$.

It follows that Equ. (1.12) with the boundary conditions (1.2) – (1.4) has a solution \mathcal{X}_2 such that

$$r < ||x_2|| < R$$
.

From lemma (D), we obtain

$$x_2(t) \ge \xi ||x_2|| w(t)$$

$$> \xi rw(t)$$
,

which implies that $U_2(t)$ is also a solution of Equ. (1.11)

with (1.2) - (1.4).

Now we have shown that equation (1.11) with the boundary conditions (1.2) – (1.4) has two positive solutions X_1 and X_2 satisfying

$$0 < Mw(t) \le x_1(t), ||x_1|| < r \le ||x_2|| < R.$$

Finally we prove that $y(t) = x(t) - \lambda dw(t)$ is a positive solution of boundary value problem (1.1) – (1.4), when \mathcal{X} is a positive solution of Equ. (1.11) with (1.2) – (1.4).

Let

$$x(t) = y(t) + \lambda dw(t)$$
.

Substituting the above value of X(t), Equ. (4.11) becomes

$$y^{(n)}(t) + \lambda h(t) \lceil F^*(t, y(t) + \lambda dw(t)) - d \rceil = 0.$$
 \rightarrow (1.13)

From Equ.(4.7) we know that

$$F^*(t,x) = d + F(t,x - \lambda dw(t))$$

$$F^*(t,x)-d=F(t,x-\lambda dw(t)).$$

Therefore

$$F^*(t, y(t) + \lambda dw(t)) - d = F(t, y(t) + \lambda dw(t) - \lambda dw(t))$$
$$= F(t, y(t)). \qquad \to (1.14)$$

Substituting (1.14) in (1.13) we get

$$y^{(n)}(t) + \lambda h(t)F(t, y(t)) = 0.$$
 $\rightarrow (1.15)$

Since

$$\min_{0 \le t \le 1} F(t, Mw(t)) = \min_{0 \le t \le 1} f(t, Mw(t)),$$

from the proof of inequality, we get

$$y(t) \ge Mw(t)$$
.

Then y(t) is also a positive solution of boundary value problem (1.1) – (1.4).

Similarly, if we take

$$y_1(t) = x_1(t) - \lambda dw(t)$$

and

$$y_2(t) = x_2(t) - \lambda dw(t),$$

then we get $y_1(t)$ and $y_2(t)$ are also positive solutions of boundary value problem (1.1) –(1.4).

II. CONCLUSION

Therefore boundary value problem (1.1) – (1.4) has at least twin positive solutions y_1 and y_2 satisfying.

$$0 < Mw(t) \le y_1(t), ||y_1|| < r$$
, and $r \le ||y_2|| < R$, $0 < t < 1$,

provided that $\max\left\{a_1,a_2\right\}<\lambda< b_1$. Hence the proof of the theorem.

REFERENCES

- [1] J. V. Baxley and C. R. Houmand, Nonlinear higher order boundary value problems with multiple positive solutions, J.Math. Anal. Appl. 286 (2003) 682-691.
- [2] Zengji Du, Fubao Zhang, and WeigaoGe, Positive solutions for higher order boundary value problems with sign changing nonlinear terms, Differential Equations and Dynamical Systems, 14 (2006) 239-253.
- [3] B. G. Zhang and X. Y. Liu, Existence of multiple symmetric positive solutions of higher order Lidstone problems, J. Math. Anal. Appl. 284 (2003) 672 689.
- [4]Z. J. Du, W. G. Ge, and X. J. Lin, Existence of solutions for a class of third- order nonlinear boundary value problems, J. Math. Anal. Appl. 294 (2004) 104 112.
- [5] R. Y. Ma, Multiple positive solutions for a semipositone fourth order boundary value problem, Hiroshima Math. J.33 (2003) 217 227.
- [6] R. P. Agarwal, D.O' Regan, and P.J.Y. Wong, "Positive Solutions of Differential, Difference and Integral Equations", Kluwer Academic Publishers, Boston, 1999.
- [7] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract cones, Academic Press, San Diego, 1988.