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ABSTRACT 
This papers is related to positive solutions for 

higher order boundary value problems. 
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I.  INTRODUCTION 
 

In this Paper, we generate the existence of 

positive solutions for boundary value problems  

1.1 LEMMA 

 In this section, we present the following 

assumptions and lemma that are used for proving our 

theorems.

 

 Let   Banachspace  
2[0,1]nX C  ,   

cone  { : ( ) 0}K y X y t   . 

Let ║.║ denote the supremum norm on X ,  and  for a constant  c , 

let  

{ : }cK y K y c   ,   

 { : }cK y K y c    . 

Let    

1

0
0 1
max ( , ) ( )

t
N G t s h s ds

 
  .  

We use also the following assumptions: 

(A1)     , , ,1 2 1 2 0     and  1 2 1 2 2 1 0          ; 

(A2)     ([0,1] [0, ), );f C R    

(A3)      
1

0

( ) (0,1), , 0 ( , ) ( )h t C R G t s h s ds    , 
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where [0, ), ( , )R G t s    is  the Green’s function of the problem  
( ) 0nx    with the boundary 

conditions  (1.2) -  (1.4). 

It is clear that 

2

2

( , )
( , )

n

n

G t s
g t s

t









,   (1.1) 

is the Green’s  function of the boundary value problems 

'' 0, 0 1x t    ,                    (1.2) 

1 1

2 2

(0) '(0) 0,

 (1) '(1) 0,

x x

x x

 

 







 

 

  (1.3) 

given by, 

1 1 2 2

1 1 2 2

1
( )[ (1 ) ], ;

( , )
1

( )[ (1 ) ], .

t s t s

g t s

s t s t

   


   









   



   

 (1.4) 

LEMMA: A 

 Suppose :T X X  is completely  continuous. Define the operator   :TX K   by 

 ( )( ) max ( ), ( )y t y t w t  ,  for y TX , 

where
1( ) [0,1], ( ) 0nw t C w t    is  a  given function. Then    

:T X K o  

is also  a  completely continuous  operator. 

II. BVP 
  

We suppose that (A1), (A2), (A3) hold. The 

following Theorems (2.1) and (2.2) give sufficient 

conditions which guarantee the existence of positive 

solutions for BVP (1.1) – (1.4). 

 

THEOREM: 1.2.1 

 Assume there exist constants 0r M  ,  such that  
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max
0 1

( )

min
0 1

.0  
( , ( )) ( , )

t

Mw t x r

t

M r
a b

f t Mw t N f t x
 

 

 

   

(1.1) 

Then BVP (1.1) – (1.4) has atleast one positive solution  

( )y t satisfying 

0 ( ) ( ), 0 1 y rMw t y t t and     ,          (1.2) 

provided that  [ , )a b . 

PROOF: 

 We define the auxiliary function  ( , )F t x  as 

  
( , ), ( ),

( , )
( , ( )), ( ).

f t x x Mw t
F t x

f t Mw t x Mw t









(1.3) 

Let the operator :T K K be  defined  by 

1

0

( )( ) ( , ) ( ) ( , ( )) , 0 1.Tx t G t s h s F t x s ds t   (1.4) 

Then   T  is on K  a completely continuous operator. 

Let the operator : X K   be defined by 

 ( )( ) max ( ),0y t y t  .   (1.5) 

From lemma (A), 

:T K K o is also completely continuous. 

For rx K , set  

   0,1 : , 0J t F t x t     . 

Then we have, 

( ) ( )T x t o  max ( )( ),0Tx t  

1

0

max ( , ) ( ) ( , ( )) ,0G t s h s F t x s ds
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1

0

( , ) ( ) ( , ( ))G t s h s F t x s ds   

( , ) ( ) ( , ( ))
J

G t s h s F t x s ds   

0 1
0

  max ( , ) ( , ) ( )
t

Jx r

b F t x G t s h s ds
 
 

   

     0 1
( )

max ( , )
t

Mw t x r

fNb t x
 
 

  

r . 

Then for every rx K ,  

( ) ( )T x t o x , 

it follows that  

 deg , ,0rK I T K o 1 ,  

where degK  stands for the degree in cone K . 

Then T o  has a fixed point ry K . 

To finish the proof based on the definition of F , it suffices to show that the fixed point ry K  satisfying 

( ) ( ) ( )Ty t Mw t , 0 1t  ,  (1.6) 

since F f  in the region. 

In order to show (3.2.6) is hold, we first show that 

( 2) ( 2)( ) ( ) ( )n nTy t Mw t  ,  0 1t  .   (1.7) 

Otherwise, let   

   
( 2) ( 2)( ) ( ) ( ) ( )n nu t Mw t Ty t   , 0 1t  , 

then there exists 0 0,1t     such that                                                                                                                         

 0 0 1
( ) max ( )

t
u t u t

 
 A >0.  (1.8) 

If 
0 0t  , then  

( 3) ( 3)( ) ( 2) ( ) ( 2)( ) ( )n nu t n Mw t n Ty t       
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( 3) ( 3)
0 0 0( ) ( 2) ( ) ( 2)( ) ( )n nu t n Mw t n Ty t       

Therefore (0) 0u  . 

Since both ( )Mw t  and ( )( )Ty t  satisfy the boundary  

condition (1.3), we have  

1 (0) (0)u u     

 
( 2) ( 2) ( 1) ( 1)

1 1(0) ( ) (0) (0) ( ) (0)n n n nMw Ty Mw Ty       
   

     

( 2) ( 2) ( 1) ( 1)
1 1 1 1(0) ( ) (0) (0) ( ) (0)n n n nMw Ty Mw Ty           

( 2) ( 1) ( 2) ( 1)
1 1 1 1(0) (0) ( ) (0) ( ) (0)n n n nMw Mw Ty Ty         

   
    

0 . 

Therefore 1 (0) (0)u u   0 . 

If 1 0  , from 0  , then 1 0  , so (0) 0u  , which contradicts    to (1.2.8). 

Then  

1 0  , 1 0  and (0) 0u  .   (1.9) 

Now we claim that  

( ) 0u t  , 0,1t    .    (1.10) 

If the assertion is false, then there is 1 0,1t  such that ( ) 0u t  , 10,t t , 1( ) 0u t  . (1.2.11) 

So for every  10,t t  , from (3.2.9), we have 

0

( ) (0)  ( ) 
t

u t u u s ds      

( ) ( )

0

 ( ) ( ) ( )
t

n nMw s Ty s ds 
 

   

0

 ( ) ( , ( ))
t

h s M F t y s ds     

0 . 
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That is ( ) 0u t  , 10,t t , and from (1.2.11) we have the following contradiction 

10 ( )u t (0)u L 0 . 

Then Equ. (2.10) is hold.  

If 0 1t  , we can obtain (2.10) in a similar way. 

Finally, if 0 (0,1)t  then 
0( ) 0u t  . We are able to show that ( ) 0u t   respectively in 

00,t    and in 

,0 1t    in the same way as the above argument. So (3.2.10) holds for all the possible cases. 

Since both ( )Mw t  and ( )( )Ty t  satisfy the boundary condition (1.2)- (1.4), that is,  

( ) ( )(0) ( ) (0)i iMw Ty 0 , 0,1,...., 3.i n   

From (3.2.10), we have  

( ) ( )( )Mw t Ty t
3 1

1 3
0 0 0

.... ( ) .....
nt

nu s dsd d


 


     

0 .    (1.12) 

Then we have the following contradiction 

0 00 ( ) ( )( )Mw t Ty t   

1 1

0 0
0 0

( , ) ( ) ( , ) ( ) ( , ( ))G t s h s Mds G t s h s F s y s ds    

1

0
0

( , ) ( ) ( , ( ))G t s h s M F s y s ds     

1

0
0 1 0  min ( , ( )) ( , ) ( )

t
M a f t Mw t G t s h s ds

 

  
    

0 . 

Then ( )T y Ty o y  and y  is a solution of boundary value problem (1.1)-(1.4). 

Hence the proof of the theorem. 

THEOREM: 3 

Assume ( ,0) 0f t  , ( ) ( ,0) 0h t f t   and there exists 0r  ,  such that  
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0
0 1

0
min ( , )

x r
t

r
b

N f t x
 
 

  .    (1.13) 

Then when b   boundary value problem(1.1)- (1.4) has atleast one positive solution ( )y t  satisfying  0 y r  . 

PROOF: 

Let ( , )F t x
,    

.

( , ),         0

( ,0) ,    0

f t x x

f t x x








 
   (1.14) 

Similar to the proof of Theorem (1.2.1), we show T o  has a fixed point ry K , where rK  and T  defined as in 

Theorem (1.2.1). 

Now we claim that  

( 2)( ) ( ) 0nTy t  , 0 1t  .   (1.15) 

Otherwise, then there exists 0 0,1t     such that 
( 2)

0( ) ( )nTy t  
0 1

( 2)min ( ) ( )
t

nTy t
 

  

B  

0 . 

We prove that  

( 2)( ) ( ) 0nTy t  , 0 1t  .   (1.16) 

If  
0 (0,1)t  , then  

( 1)
0( ) ( ) 0nTy t  .  

If (3.2.16) does not  hold, then there is  1 0 00, ,1t t t    satisfying  

( 2)
1( ) ( ) 0nTy t  ,    and  

( 2)( ) ( ) 0nTy t  ,  
1 0( , )t t t or  

0 1( , )t t t . (1.17) 

Without loss of generality we suppose 1 00,t t . Then from boundary condition (1.2), for every 
1 0( , )t t t , we have 

3 1
2

1 3
0 0 0

 .... ( )( ) ( ) ( ) .....
nt

n
nTy t Ty s dsd d



 



     

0 .      (1.18) 
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From (3.2.18), for every 
1 0( , )t t t  

0
( 1) ( 1) ( )

0( ) ( ) ( ) ( ) ( ) ( )
t

n n n

t

Ty t Ty t Ty s ds     

0

( ) ( , ( ))
t

t

h s F t y s ds   

0 , 

Which implies the following contradiction 

( 2)
10 ( ) ( )nTy t

1

0

( 2) ( 1)
0( ) ( ) ( ) ( )

t
n n

t

Ty t Ty s ds     

0

1

( 1)( ) ( )
t

n

t

B Ty s ds     

B  

0 . 

Then (1.2.15) is hold. 

So for 0,1t    , we have 

3 1
( 2)

1 3
0 0 0

 .... ( )( ) ( ) ( ) .....
nt

n
nTy t Ty s dsd d



 



   

 

0 . 

If 0 0t  or 0 1t  , with use of the boundary conditions we can show the above assertion in a similar way in 

Theorem (1.1). 

Then  

( )y T y o Ty , 

that is ( )y t is a non negative solution of boundary value problem (1.1) - (1.4) with 0 y r  . 

III. CONCLUSION 

Besides ( ) ( ,0) 0h t f t   implies ( ) 0y t  in  0,1 . 

Therefore 0 y r  . 

Hence the proof of the theorem. 
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