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ABSTRACT 
In this paper, the behavior of MR particles has been 

systematically investigated within the scope of analytical 

mechanics. . A magnetorheological fluid belongs to a class of 

smart materials. In magnetorheological fluids, the motion of 

magnetic particles is controlled by the action of internal and 

external forces. This paper presents analytical mechanics for 

the interaction of system of particles in MR fluid. In this 

paper, basic principles of Analytical Mechanics are utilized 

for the construction of equations.  
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I.  INTRODUCTION 
 

Magnetorheological fluid is the one of the 

important type of smart materials and when subjected to a 

magnetic force, these fluids greatly increase its apparent 

viscosity [1]. Among all the smart materials, the 

magnetorheological fluids are important group. 

Magnetorheological fluids are also referred as intelligent 

class of materials. Typically, magnetorheological fluids are 

consists of soft paramagnetic or ferromagnetic particles 

dispersed in a base fluid. The magnetic force makes the 

suspended particles adjust in chain along the magnetic 

field lines in a way to decrease the overall energy of the 

magnetic force as shown in Figure 2,  

 

 

Figure 1: Iron particles present in Base fluid 

 

Figure 2: Behaviour of iron particles with  Magnetic field 

A Magnetorheological (MR) fluid is controlled by 

using external magnetic force and MR fluid changes from 

a liquid to a semi-solid state reversibly. Alternatively, in 

the absence of a magnetic force, MR fluids act as a 
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Newtonian fluid. In conclusion, from fluid dynamics point 

of view the behaviour of MR fluids in the absence of 

magnetic force is considered as Newtonian fluid, while it 

illustrates distinct Bingham behaviour by the application of 

the magnetic force [2,3]. So that, MR fluid has been 

demonstrated in general as a Bingham fluid model, whose 

constitutive relation is represented by the following 

equation [4], 

 

    ( )      ̇                              ( ) 

Where,                               
  ̇               
  ( )                                                  , 

                 
Conventional magnetorheological fluids 

comprised of a base fluid, immersed with ferromagnetic 

micron-sized iron particles. By applying a magnetic field 

on MR fluids, the iron particle forms a chainlike structure 

in the direction of magnetic field lines. Therefore, the 

stronger the magnetic flux on the MR fluids, the stronger 

the particle chains, ultimately it increases yield strength of 

magnetorheological fluid. The magnetorheological fluid is 

consists of three main components: Base (Carrier) fluid, 

iron particles, and stabilizing additives [5].  

 

 
 

Figure 3: MR fluid Chain Formation 

 

II. EQUATION OF MOTION FOR 

SYSTEM OF PARTICLES 
 

Magnetorheological fluids are generally consist of 

soft paramagnetic or ferromagnetic particles dispersed in a 

base fluid and that exhibit dramatic changes in rheological 

properties, when subjected to external magnetic force. The 

magnetic force makes the suspended particles adjust in a 

chain along the magnetic field lines in a way to decrease 

the overall energy of the magnetic force [6, 7].  

Suppose MR fluid contains   point magnetic 

particles of                      having position 

vectors,  ̅               with reference to the point O.  

 
Figure 4: Positions of Particles in MR fluids 
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The system of magnetic particles of the MR fluid 

undergoes three kinds of forces namely magnetic forces, 

external forces, and internal forces. 

The overall force acting on the     particle of the system is 

given by the equation, 

 

 ̅   ̅ 
( )
  ̅  
(   )
  ̅ 
( )

 

Where  ̅ 
( )
                       ,  ̅  

(   )
                      and   ̅ 

( )
                      experienced by     

particle. 

 

Thus, according to Newton’s second law of motion [7, 8], 

 ̅ 
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 ∑ ̅  
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  ̅ 
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     ( ) 

By principle of superposition the overall interaction of      particle with remaining  (   )            of the system is, 
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This equation also can be written as, 
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According to Newton’s third law of motion, 
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Thus, equation (3) becomes, 
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Thus equation (5) represents the equation of motion for the system of particles in MR fluid. 

 

The set of Lagrangian equations for the motion of a charged particle under electromagnetic force is [9, 10, 11], 

 
 

  
(
  

   ̇
)  
  

   
 
  

  ̇ 
                      ( ) 

Where R is Rayleigh’s dissipation function and  

         (     )   ( ) 
 

III. HAMILTONIAN FUNCTION AND 

PRINCIPLE FOR MR FLUIDS 
 

The Hamiltonian function is denoted by H and defined as, 

 

  ∑   ̇   

 

   ( ) 

Where    is the generalized momentum and derived by the relation [12], 

   
  

  ̇ 
   ( ) 

Also by the Lagrangian equation of motion, we can find, 

 ̇  
  

   
    (  ) 
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The Hamiltonian function   is the function of 

generalized momentum     , generalized coordinate    and 

time  . Hence, we can write, 

 

   (         )  ∑   ̇   

 

    (  )  

If particular generalised coordinate    does not appear in Lagrangian L explicitly. Then the value of  
  

   
     (  ) 

From equation (12), equation (10) becomes, 

 ̇      (  ) 
By taking integration on both the sides, we get, 

   
  

  ̇ 
            (  ) 

 

Thus, if particular generalised coordinate    does 

not appear in Lagrangian   explicitly, then the generalised 

momentum    is a constant of motion and such type of 

generalised coordinate    is called cyclic or ignorable 

coordinate. 

Hamilton’s principle for non-conservative and 

holonomic MR fluid states that “The motion of a 

dynamical MR fluid from time    to time    is such that the 

line integral has stationary values for the actual path 

followed by the MR fluid”. 

 

  ∫     

  

  

                (  ) 

The term   is called the Hamiltonian principal 

function,   is the total kinetic energy and   is the total 

potential energy of the magnetorheological fluid. 

The above Hamiltonian principle may be 

expressed as, 

 

    ∫     

  

  

     (  ) 

where   is the variation in the actual path 

followed by the MR fluid. 

Now we derive Lagrange’s equations of motion 

for conservative MR fluid by using Hamiltonian principle. 

Let’s consider conservative dynamical MR fluid 

whose configuration at any instant   is specified by the 

generalized coordinates              . 

Then the Lagrangian for specified MR fluid is a 

function of                                       , 

generalized velocities  ̇   ̇     ̇  and       . 
Hence,

 

   (               ̇   ̇     ̇   )   (  ) 
 

If the Lagrangian does not depend on time   explicitly, then the variation    can be stated as, 

   ∑
  

   
   

 

   

 ∑
  

  ̇ 
  ̇ 
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Integrating both sides from          with respect to  , we get 

∫      

    

   

 ∫ ∑
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  ̇ 
  ̇ 
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We know Hamiltonian principle for conservative MR fluid [13], 

    ∫     
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This implies that,  

∫ ∑
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Since we have,  
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Therefore, the above integral can be written as,  
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Integrating by parts the second term on the left hand side of the above integral, we get 
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Since   variation there is no change in the coordinates at the end points   (   )  
     .  

Hence, 
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If the constraints on magnetorheological fluids are 

holonomic then the                             are 

independent of each other. Hence, the above integral 

vanishes if and only if the coefficients of each     must 

vanish separately i.e. 

 
 

  
(
  

  ̇ 
)  
  

   
                 (  ) 

 

These are the Lagrangian equations of motion for 

conservative holonomic MR fluids and which is derived by 

Hamiltonian principle. 

 

IV. HAMILTONIAN EQUATIONS FOR 

MR FLUIDS 

 

The Lagrangian equations for motion of MR fluid 

are the set of second order ordinary differential equations. 

Here we derive Hamiltonian equation of motions for MR 

fluid in connection with generalized momentum by using 

Hamiltonian function and Hamiltonian principle.  These 

equations of motion is more fundamental to the 

foundations of quantum mechanics and analytical 

mechanics. 

We know the Hamiltonian function   is a 

function of the function of generalized momentum     , 

generalized coordinate    and time  . Hence, we can write,

 

   (                             )   (  ) 
      (         )                (  ) 
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By definition of total derivative, we can write, 
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By definition of Hamiltonian function, 
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Again by definition of total derivative, 
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But from equation (17), 

   (               ̇   ̇   ̇     ̇  ) 
Hence, 
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But from equation (9), 
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Hence, equation (33) reduces to, 
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Now comparing the coefficients of                  in equations (31) and (34), we get,  

 ̇  
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By definition of generalized momentum and Lagrangian equation of motion we find, 

   ̇  
  

   
 

Equation (35) becomes, 

 ̇  
  

   
   ̇   

  

   
   (  ) 

 

Thus the equation (36) is called Hamilton’s 

canonical equations of motion and which is the set of      
   order partial differential equations and which explain 

the nature of magnetorheological fluid under 

electromagnetic force by taking 

 

         (     ) 
 

Considering the MR fluid consists of n particles 

and N generalized coordinates then the Lagrangian 

function for the particle of mass m of the MR fluid is, 

 

  
 

 
∑    

 

   

  ∑    

 

   

      (  ) 

Suppose the MR fluid is placed in three-dimensional Cartesian coordinate system, then          . 
 

Hence, above equation becomes, 

  
 

 
 ( ̇   ̇   ̇ )   ( ̇    ̇    ̇  )       (  ) 
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Here   is a function of coordinate       only. In 

this system       are the generalized coordinates. Hence, 

the generalized momenta become, 
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      ̇            ̇             ̇        (  )  

Solving these equations for  ̇  ̇  ̇   we get, 
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The Hamiltonian of the particle is given by, 
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From equation (40), equation (41) becomes, 
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Then above Hamiltonian can be stated in vector form as, 

  
 

  
( ̅    ̅)       (  ) 

This is the required Hamiltonian of the particle moving in MR fluid under the applied electromagnetic force. 

From equation (36), 
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The first equation of motion gives the same set of equations of motion described in equation (40). 

Now consider second equation of motion, 
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Here         
Then, 
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The equation (46), (47), (48) can be written in vector form as, 
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Then above set of equations (49), (50), (51)  can be expressed in vector form as,  

 ̇̅         ( ̅   ̅)    (  ) 
 

Using the above equation we can determine the 

generalized momenta for single point particle of the MR 

fluid. In this way, we find the above set of equations for all 

particles of MR fluid and to explain the nature of the MR 

fluid under the action of electromagnetic forces. 
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V. CONCLUSIONS 
 

From a mechanics point of view, 

magnetorheological fluid can be viewed as a constrained 

motion of magnetic particles in MR fluid under the action 

of magnetic forces. The analytical mechanics is the most 

important area of research on MR fluids. In this paper, a 

brief introduction about Hamiltonian equations for 

magnetorheological fluid is presented. Then these concepts 

are utilized to derive Lagrange's equations from 

Hamiltonian equations for a system of magnetic particles. 

Here Hamiltonian formulation is developed for a single 

particle and to be extended for two or more system of the 

particles. This paper explains the mechanics of magnetic 

particles which controlled by an external magnetic force.        
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