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ABSTRACT 

In this work, a neuro-fuzzy regulator based on 

ANFIS is designed for the current control of a Bidirectional 

Buck-Boost chopper battery charger. First, a PI regulator is 

used in the control loop. Data from the PI regulator is 

extracted and then used to train ANFIS. The performances of 

the two PI and neuro-fuzzy commands were evaluated under 

the MATLAB/SIMULINK environment. According to the 

simulation results, it was found that the neuro-fuzzy regulator 

ANFIS is more effective in improving the current response by 

reducing the response time. In conclusion, the neuro-fuzzy 

control gives a better performance compared to the PI control. 

 

Keywords-- Buck-Boost, Bidirectional, PI, Neuro-fuzzy, 

ANFIS 
 
 

 

I. INTRODUCTION 
 

One of the applications of a bi-directional chopper 

is in PV systems with storage battery. The chopper 

constitutes the interface between the DC bus and the 

battery, and thus allows the control of the charge and the 

discharge of the battery by controlling the current in its 

inductance. For current control of these choppers, a PI 

controller is traditionally used as presented in [1], [2], 

[3], [4] and [5]. 

In this work, we propose to design for a 

bidirectional Buck-Boost chopper, a neuro-fuzzy control 

based on the hybrid neuro-fuzzy model ANFIS in order to 

compare the performance of a neuro-fuzzy controller with a 

PI controller classic.  

The following plan is considered: Section 2 

consists of the modeling of the Buck-Boost chopper. 

Section 3 presents the design procedures for PI and neuro-

fuzzy controls. The simulation results of the two control 

strategies are compared in section 4. Finally, conclusions 

are given in section 5.the recent years, rapid transition has 

been observed in research in computer vision and machine 

learning.      

 

II. BIDIRECTIONAL BUCK-BOOST 

MODELING 
 

2.1 System Overview 

Figure 1 presents the structure of the bidirectional 

Buck-Boost chopper associated with a battery. The battery 

model is likened to a DC voltage source fitted with a 

variable resistor representing the internal resistance of the 

battery [6]. 

 
Figure 1: Bidirectional Buck-Boost Converter associated with a battery.

 

In this assembly, T1 and T2 are actuated in a 

synchronous and complementary mode, which is to say, 

when T1 is closed, T2 is open and vice versa.  

It therefore appears two operating sequences of 

the chopper according to the states of T1 and T2: 

- Sequence 1: T1 closed  T2 open 

L

dc

di
L V

dt
     (1) 

 0
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
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- Sequence 2: T1 open    T2 closed 

 L
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Let be c(t) the control state of T1 during its 

commutation, and 1-c(t) that of T2. When T1 is closed 

and T2 is open, c(t)=1. For T1 open and T2 closed, c(t)=0. 

 
Figure 2: Operation sequence 1 

 

 
Figure 3: Operation sequence 2

Thus, by analyzing the two operating sequences 

of the chopper, we obtain the model under ideal 

conditions defined by the following two differential 

equations: 

   1 ( )  L

dc c

di
L c t V c t V

dt
   (5) 

 0
(1 ( ))


  

cc

L

v

V VdV
c t i C

dt R
   (6)                                                                                         

Since components are never perfect in practice, 

an internal resistance RL to inductance L can be added. 

Then, equation (5) then becomes: 

   1 ( )   L

L L dc c

di
L R i c t V c t V

dt
  (7) 

2.2 Structure of the Current Control loop  
The chopper current control loop contains four 

blocks (Figure 4). 

- Regulator 

Its role is to act on the control variable u to make 

the measured current value IL as close as possible to the 

setpoint value Iref and thus minimize the current error e.  

- Limitation 

This block will limit the quantity u produced by 

the regulator between 0 and 1, knowing that the cyclic ratio 

α of the chopper must be included in this interval. 

- Pulse Width Modulator (PWM) 

It receives the duty cycle at its input α and outputs slots 0-1 

and  

 ref Le I I      (8) 

 
Figure 4: Current control loop of Buck -Boost converter 

 

III. ORDERING STRATEGIES, DESIGN 

AND SYNTHESIS 
3.1.  PI Control 

- Structure adopted 

The PI regulator used here is of the product form 

which is written: 

1
( )


 n

R

i

pT
G p

pT
               (9)                                                                                                                                    

With Tn, the integral correlation assay and Ti, the 

integral time constant. 

- Design and synthesis of the regulator 

According to equation (7) of the modeling of the 

Buck-Boost chopper, we have a first-order system whose 

transfer function that we denote G(p) with its expression: 
1

( )

1





L

L

R
G p

L
p

R

       (10)                                                                                                                                                  
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For a static gain and a time constant of the system named 

respectively K and T, we have: 

( )
1




K
G p

pT
    (11) 

 

 

 

Where:  
1




 
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L

L

K
R

L
T

R

     (12) 

 

The open loop transfer function (FBTO) is then: 

0

1
( ) ( ). ( ) .

1


 



n

R

i

pT K
G p G p G p

pT pT
      (13)                                                                                                           

By the General Method [7], we have:  

0; 0





  

n

i

T aT

T bKT

a b

                (14)                                                                                                                                                                        

For a=1, the FTBO becomes: 

0

1 1
( ) ( ). ( ) .

1


  


R

pT K
G p G p G p

pbK pT pbT
  (15)                                                                                          

The closed loop transfer function (FTBF) will be: 

1
( )

1



H p

pbT
                    (16)                                                                                                                                          

According to this equation, the response is all the more 

rapid as b decreases ( 0 1 b ). 

 
3.2. Neuro-fuzzy Control based on ANFIS 

- Preparation of the order 

Figure 5 below describes the elaboration of the 

neuro-fuzzy control based on the learning of the current PI 

regulator in the control loop [8], [9]. 

In this scheme, the hybrid neuro-fuzzy model 

ANFIS is used to make an offline identification of the PI 

regulator. Once this identification is accomplished, the 

neuro-fuzzy network replaces the regulator in the control 

loop and will function as a current neuro-fuzzy regulator. 

 

Figure 5: ANFIS structure system 

 
- ANFIS model used 

Figure 9 presents the ANFIS architecture that 

we used. The model contains 9 rules. The two system 

inputs are the current error e and the variation of the current 

error e, and at output the command u. 

                                                                                                         

 

Figure 6: ANFIS off-line training 
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- Layer1: This is the fuzzification layer. The 

membership functions are of the Gaussian form. 
2

2

( )
( ) exp ; 1,2,3

2

 
   

 
i

i

A

i

e a
e i

b
          (18)                                                                   

2

2

( )
( ) exp ; 1,2,3

2

 
   

 
i

i

B

i

de c
de i

d
          (19)                                                                                                                                

Where ( , )i ia b and ( , )i ic d  are the parameters of the rule 

premises. 

- Layer 2: The neurons in this layer model the 

“AND” operator and calculate the truth value of each 

rule. 
( ) ( ); 1,2,3; 1,2,...,9   

i ij A Bw e de i j      (20) 

- Layer3: This is the normalization layer of the 

truth value of each rule. 

; 1,2,...,9 


i

i

i

i

w
w i

w
       (21)                                                                                                                                                            

- Layer 4: Each neuron in this layer has the 

function of: 

( ); 1,2,...,9   i i i i i iw f w p e q de r i        (22)                                                                                                                               

Or ( , , )i i ip q r  are the parameters of the consequences of the 

rules. 
- Layer5: The neuron in this layer delivers the 

network output given by: 

; 1,2,...,9  i i

i

u w f i          (23)                                                                                                                              

The parameters of ANFIS which are the 

parameters of the premises and the parameters of the 

consequences are optimized by using the hybrid learning 

method formed by the combination of the gradient descent 

algorithm and the least squares estimation algorithm [10]. 

 

IV. SIMULATIONS AND RESULTS 

 
4.1. Simulations and Parameters Used 

- Simulations 

Under Matlab/Simulink, the model below was 

adopted during the various simulations. 

 

Figure 7: Bidirectional Buck-Boost converter with current loop control 
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Figure 8: Controller and Command with Neuro-Fuzzy controller 

 

Figure 9: Internal structure of the Neuro-fuzzy Controller 

 

 

Figure 10: Data-gathering of ANFIS training 

 The 0.83 weighting coefficient mounted in parallel 

with the ANFIS regulator performs the integral 

action enabling the steady-state current error to be 

eliminated.  

 For a simulation duration of 1.5s, the current setpoint 

changes to -1A to t=0s, to then rise to 1A to t=0.37s, 

and then to 2A to t=0.74s to finally descend to 2A to 

t=1.11s. 

- Parameters used 
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Table 1: Simulation parameters 

Settings Values 

Bidirectional Buck-Boost Chopper  

Input voltage
dcV   24V  

Switching frequency f   50KHz  

Inductance L   1.3mH  

Internal resistance LR  to the inductor  0.1Ω  

Capacitor C   1.3mH  

Battery  

Li-ion type  

Nominal voltage  48V  

Ability  10Ah  

Initial SOC 50 % 

 

4.2. Case of the PI regulator 

For the following PI controller parameters: a=1, 

b=0.08, Tn=0.013s, and Ti=0.0104s.  

We have the below simulation results: 

  

 
Figure 11: Simulation results with PI Controller 
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Figure 12: Zoom of the current with variations of reference, a) at -1[A] and b) at 1[A] 

 
Figure 13: Zoom of the current with variations of reference, c) at 2[A] and d) at -2[A] 

 
 

4.3. Case of the Neuro-Fuzzy Regulator 

With 100 input/output data pairs from the PI 

regulator, we have the learning curve in figure 15 below. 

At the 35th iteration, we have obtained the root of the 

quadratic error
46,2372 10 RMSE . After optimization 

of the antecedent parameters and conclusions of the 

ANFIS rules, we have the next results 
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Figure 15: ANFIS training curve

Figure 14: Simulation results with Neuro-Fuzzy controller 
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Figure 16: Zoom of the current according to the references, a) at -1[A], b) at 1[A], c) at 2[A] and d) at -2[A]

According to figure 15.a, we can say that the 

current IL of the chopper is well regulated and always 

follows the setpoint despite the variations of the latter. It 

can be seen that at the instants of variation of the setpoint, 

the current IL is quickly brought back to it. It can also be 

seen, as in the case of the PI regulator, that the charging 

and discharging of the battery are well controlled. In 

Figure 16, the current response has response times of 

t=0.01s, t=0.37015s, t=0.7401s, t=1.1101s for setpoints 

which are respectively -1A, 1A, 2A and -2A. 

 

V. DISCUSSIONS 
 

Table 2 summarizes the performance results in 

terms of speed of both PI and neuro-fuzzy controls. 

Table 2: Comparative table of PI and neuro-fuzzy commands 

 Response time (s) 

Reference/ Time IP Neuro-Fuzzy 

-1A at t=0s 0.08 0.001 

1A,  to t=0.37s 0.37015 0.37015 

2A to t=0.74s 0.7401 0.7401 

-2A at t=1.11s 1.111 1.1101 
  

 

It can be seen from this table that for the two 

commands, there are the same response times for each 

setpoint change to t=0.37s and t=0.74s. 

For setpoint changes at t=0s and t=1.11s: the 

Buck-Boost current is established at the value -1A after 

t=0.001s and at the value -2A after t=1.1101s with the 

neuro-fuzzy regulator, while that of the PI regulator only 

reaches the value -1A after t=0.08s and the value -2A after 
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t=1.111s.  

Then, compared to the PI control, the neuro-

fuzzy control shows a decrease of 0.9ms and of 79ms in 

terms of response time for the set point changes which 

are respectively at t=0s  and t=1.11s. The current 

response is faster with the neuro-fuzzy regulator because 

there is a reduction in the response time. Then, the use of 

the neuro-fuzzy control improves the response of the 

system compared to the PI control at the level of the 

response time of the system. 

 

VI. CONCLUSION 
 

In this work, a neuro-fuzzy control based on 

ANFIS of a bidirectional Buck-Boost chopper battery 

charger was designed and compared to a PI control. The 

necessary training data was collected from the PI control 

regulator. The simulation results showed that compared 

to the PI control, the neuro-fuzzy control gives a better 

performance on the current control of a bidirectional 

Buck-Boost chopper with minimal response times for all 

the set point variations. 
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