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ABSTRACT 
This paper presents the stabilization control of the 

rotational double inverted pendulum system. It is generally 

a non-linear, non-minimum phase, unstable, and 

underactuated system of high order. It has some significant 

real-life applications such as position control, aerospace 

vehicle control, and robotics. The objective is to determine 

the control law to the motor’s output torque such that the 

inverted pendulum motion will be stabilized about a 

vertical axis and position the rotary arm to a commanded 

angular position. In this study, multi-PID controllers, 

Linear-Quadratic Regulator (LQR), and Internal Model 

Control (IMC) controllers are designed and MATLAB-

based simulations are performed to understand and 

compare the performance of the three control schemes. 
 

Keywords-- RDIP System, Linear Quadratic Regulator, 

PID, Internal Model Control, Non-Minimum Phase 

 

 

 

I. INTRODUCTION 
 

The rotary double inverted pendulum plant 

considered has two main components, the rotary motion 

plant(servo base unit) to which the rotary arm is 

attached, and the rotary double inverted pendulum in 

which a short 7-inch bottom rod, an encoder hinge, and 

the top 12-inch rod in such a manner that the rod is 

moving as an inverted pendulum in a plane that is at all 

times perpendicular to the rotating arm. Hence, the RDIP 

has 2 unactuated and 1 actuated degree of freedom. The 

RDIP is an extension of the Rotary Inverted Pendulum 

(RIP) which was invented at Tokyo Institute of 

Technology by Katsuhisa Furuta and his colleagues in 

1992. Since the invention of RIP there have been a lot of 

research on controllers in combination with PID, LQR, 

SMC, fuzzy and neural network based. But in the case of 

RDIP very few controllers and results have been 

demonstrated. The main reason is because the RDIP is 

said to be easily affected by uncertainties apart from the 

non-linearity and instability faced by inverted 

pendulums. In this paper we model the Quanser SRV02 

Rotary Double Inverted Pendulum system and 

implement various control methods such as LQR, PID 

and Internal model control to balance the pendulum in 

the upright position. 

 

 

 

 
 

II. MATHEMATICAL MODEL OF 

THE PLANT 
 

A. Model Convention 

The mathematical modelling forms the basis of 

any control methods. The more that is known about a 

dynamic system, the more accurate a mathematical 

model can be. Accurate mathematical modelling allows 

the design of faster, more accurate and effective 

controllers. The rotary pendulum model is shown in Fig 

1. The rotary arm pivot is attached to the SRV02 

system(servo base unit) and is actuated. The arm has a 

length of Lr, moment of inertia of Jr, and its angle, θ, 

increases positively when it rotates counter-clockwise 

(CCW). The servo (and thus the arm) should turn in the 

CCW direction when the control voltage is positive, i.e., 

Vm > 0. The double-pendulum assembly is connected to 

the end of the rotary arm. The short-sized, bottom 

pendulum has a total length of Lp1 and a center of mass 

of lp1. The moment of inertia about its center of mass is 

Jp1 and it has a mass of Mp1. The top medium-sized 

pendulum has a total length of Lp2, a center of mass of 

lp2, a moment of inertia of Jp2, and a mass Mp2. The short 

bottom pendulum angle, α, and the medium top 

pendulum angle, ϕ, are both zero when it is perfectly 

upright in the vertical position and they increase 

positively when rotated CCW. The hinge between the 

two pendulums has a mass of Mh. 
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Figure 1: Rotary Double-Inverted Pendulum conventions 

 

B. Non-Linear Equations of Motion 
The Lagrange method is used to find the 

equations of motion of the system. The Euler-Lagrange 

equation is a systematic method of finding the equations 

of motion, i.e., EOMs, of a system. The equations that 

describe the motions of the rotary arm and the pendulum 

with respect to the servo motor voltage, i.e. the 

dynamics, will be obtained using the Euler-Lagrange 

equation:

 

               (1) 

The variables Qi are called generalized coordinates. For this system let, 

 
where θ(t) is the rotary arm angle, α(t) is the 

shorter bottom inverted pendulum angle and ф  is the 

longer top inverted pendulum angle. The Lagrangian of 

the system is described as: 

 

L = T - V               (2) 

where T is the total kinetic energy of the system 

and V is the total potential energy of the system. Thus 

the Lagrangian is the difference between a system's 

kinetic and potential energies. The generalized forces Qi 

are used to describe the non-conservative forces (e.g., 

friction) applied to a system with respect to the 

generalized coordinates. In this case, the generalized 

force acting on the rotary arm is:

 

              
    (3) 

and acting on the bottom and top pendulum are: 

                (4) 

                (5) 

Our control variable is the input servo motor 

voltage, Vm. Opposing the applied torque is the viscous 

friction torque, or viscous damping, corresponding to the 

term Dr. Since the pendulum is not actuated, the only 

force acting on the link is the damping. The viscous 

damping coefficient of the short (bottom) and medium 

(top) pendulums are denoted by Dp1 and Dp2. 

The total kinetic energy for the whole system is 

given by the combination of kinetic energy of each link 

in our system. Hence, we will have the total kinetic 

energy as: 

 

                                                                                           
 

   (4)                           (6) 

and the total potential energy, 

                                                                                         (7) 

Where, 

J1= Jr;   θ1 = θ;  L1 = Lr;   m2 = Mp1 

J2= Jp1; θ2 = α;  L2 = Lp1; m3 = Mp2 

J3= Jp2; θ3 = ϕ;  L3 = Lp2; li = Distance from centre of rotation to link i(=1,2,3) 
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The torque applied at the base of the rotary arm 

(i.e., at the load gear) is generated by the servo motor as 

described by the equation, 

 

                                                                                                   (8) 

Further nonlinear equations of motion are 

obtained from equation 1, 2 & 3. Then for Linearization, 

Initial conditions for all the variables are taken zero. θ = 

0◦, α = 0◦, ϕ = 0◦,   θ = 0,   α= 0,   ϕ = 0◦. For a 

multivariable system control variable z is defined:

 

                                                                                                                                                            
The linearized function is: 

                               (9) 

 

C. Linear State-Space Model 
The linear state-space equations is given by: 

 
             (10) 

where x is the state, u is the control input, A, B, 

C, and D are state-space matrices. 

For the rotary pendulum system, the state and output are 

defined as: 

 

                                                                                                                                                          

 
where, θ(t) is the position of rotary arm angle 

and α(t) is the position of the smaller arm of pendulum 

and ϕ is the position of second arm of the pendulum as 

shown in the Fig. 1. On linearizing the nonlinear 

equations of motion of the system which is obtained 

from Lagrange equation, solving for the acceleration 

terms and substituting the state given in we obtain the 

following state-space matrices: 

 

      
   

Where, 
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In the output equation, only the position and 

velocity of the servo and link angles are being measured. 

Based on this, the C and D matrices in the output 

equation are: 

 

                            

             
  

 

On substitution of the values from the Quanser manual, the state space model obtained is: 

            (11) 

  (12) 

 

To comprehend the system, the root locus of the 

model is simulated for which the response obtained is as 

shown in Fig. 2 and the open loop step response of the 

system is obtained as shown below in Fig. 3: 

 

Figure 2: Root locus of the system 
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Figure 3: Step response of rotary arm 

 

Therefore, from the presence of poles on the 

origin and right-hand side of the imaginary axis it is 

understood that there is an output component that 

increases exponentially without limits thereby making 

the system highly unstable. 

 

III. CONTROL USING LINEAR 

QUADRATIC REGULATOR 
 

In general, the theory of optimal control is 

concerned with operating a dynamic system at minimum 

cost. When the system dynamics are described by a set 

of linear differential equations and the cost is described 

by a quadratic function, it is referred to as a Linear 

Quadratic(LQ) problem. One of the main results in the 

theory is that the solution is provided by the linear–

quadratic regulator(LQR), a feedback controller whose 

equations are explained in the upcoming sub-section. 

The LQR is an important part of the solution to the LQG 

(Linear–Quadratic–Gaussian) problem. Like the LQR 

problem itself, the LQG problem is one of the most 

fundamental problems in control theory. The LQR 

algorithm reduces the amount of work done by the 

control systems engineer to optimize the controller. The 

LQR algorithm is essentially an automated way of 

finding an appropriate state-feedback controller. 

D. LQR Optimization Method 

A system can be expressed in state variable 

form as: 

 

                                      (13) 

with x(t) ∈ Rn, u(t) ∈ Rm. The initial condition 

is x(0). We assume here that all the states are measurable 

and seek to find a State-Variable Feedback(SVFB) 

control that gives desirable closed-loop properties:

 

              (14) 

The closed-loop system using this control becomes: 

                                                                                                     
(15) 

with Ac the closed-loop plant matrix and v(t) 

the new command input. 

Note that the output matrices C and D are not 

used in SVFB design. To design a SVFB that is optimal, 

we may define the performance index (PI): 

 

         (16) 

Substituting the SVFB control into this yields 

                       (17) 

We assume that input v(t) is equal to zero since 

our only concern here are the internal stability properties 

of the closed-loop system. The objective in optimal 

design is to select the SVFB K that minimizes the 

performance index J. The performance index J can be 

interpreted as an energy function, so that making it small 

keeps the total energy of the closed-loop system small. 

Note that both the state x(t) and the control input u(t) are 

weighted in J, so that if J is small,then neither x(t) nor 

u(t) can be too large. Note that if J is minimized, then it 

is certainly finite, and since it is an infinite integral of 

x(t), this implies that x(t) goes to zero as t goes to 

infinity. This in turn guarantees that the closed loop 

system will be stable. Linear Quadratic Regulator is an 
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optimal controller used to achieve desired target value 

with minimum control effort and time. In MATLAB, the 

command [K] = lqr (A,B, Q, R) calculates the optimal 

feedback matrix K such that it minimizes the cost 

function subject to the constraint defined by the state 

equation. The response of a system for a different set of 

state feedback gain matrices is determined by varying Q 

values, BY keeping R=10, and choosing the one which 

gives the best performance. The K matrix obtained from 

Matlab is: 

 

 
 

E. Simulation 
In this section, SIMULINK block diagram as 

shown in Figure 4, was used to simulate the closed-loop 

control of the Rotary Double Inverted Pendulum system. 

The system is simulated using the linear model of RDIP 

with a square wave signal with an amplitude of 

30Deg(0.5236Rad) as input. The SIMULINK model 

uses the state feedback control for which the feedback 

gain K is calculated from the LQR function. The goal is 

to ensure that the SVBF gain calculated successfully 

stabilizes the system (i.e., keeps it inverted), tracks the 

reference servo position, and does not saturate the 10V 

DC motor. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Simulink model used to simulate RDIP using LQR Controller 

 

The simulation of the above control system is performed and the following responses are obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Simulated response for position of servo rotary arm using LQR (θ) 
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Figure 6: Simulated response for position of bottom pendulum using LQR (α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Simulated response for position of top pendulum using LQR (φ) 
 

 

Figure 8: Controller Output (Input voltage to Servo) 

 

As shown by the response in Fig 5, 6, 7 & 8, the 

pendulum maintains its balance about the upright 

vertical position while tracking the ±30 degree servo 

angle. 
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IV. PID BASED CONTROL 
 

A PID controller is a control loop feedback 

mechanism widely used in industrial control systems. A 

PID controller continuously calculates an error value as 

the difference between a desired reference and a 

measured process variable and appliesa correction based 

on its proportional, integral and derivative terms. The 

controller attempts to minimize the error over time by 

adjustment of a control variable to a new value 

determined by a weighted sum of the control terms. A 

simple example is the cruise control function of a 

vehicle,where the engine power will be increased or 

decreased during an uphill or a downhill run to ensure 

that the vehicle moves at constant speed. A schematic of 

a standard PID controller can be found in Fig 9. 

Figure 9: PID loop schematic 

 

The response of the proportional term is 

proportional to the error and if there is no error, there is 

no proportional response. The integral term accounts for 

past values and integrates them over time. When the 

error becomes zero, the integral term will cease to grow. 

The derivative term is an estimate of the future trend of 

the error based on its current rate of change. This means 

that the derivative term alone cannot bring the error 

down to zero. This is why it is also called anticipatory 

control. Implementations of controllers that include a 

derivative action tend to also include a low-pass filtering 

for the derivative term to limit high-frequency gain and 

noise. 

A. PID Tuning 
Generally, PID controllers are used to control 

the SISO system. However, in the proposed system there 

are three parameters: position of servo arm, the angle of 

the pendulum 1 and the angle of the pendulum 2 to be 

controlled which is basically a SIMO system. To solve 

this problem, the triple PID controller[5] is used in this 

project to control the rotary double inverted pendulum 

using a full state feedback controller[1]. The control 

design is built in Matlab’s SIMULINK environment as 

shown in Fig 10. 

 

 

Figure 10: Simulink model for control of RDIP system using PID Controller 

 

In Fig 10, the PID controller 1 is to control the 

position of the servo arm, and the value of bottom 

pendulum and the top pendulum is controlled by 

controller 2 and controller 3, respectively. 

Full state feedback (FSF) method, or pole 

placement method[2], is a method employed in feedback 

control system theory to place the closed-loop poles of a 

plant in predetermined locations in the s-plane. Placing 

poles is desirable because the location of the poles 

corresponds directly to the eigenvalues of the system, 

which control the characteristics of the response of the 

system. In the pole placement technique, if the system is 

completely state controllable and all state variables are 

available for feedback, then poles of the closed-loop 

system may be placed at any desired locations by means 

of state feedback through an appropriate state feedback 

gain matrix K. 

Full state feedback is utilized by commanding 

the input vector u. Consider an input proportional (in the 

matrix sense) to the state vector, System with state 

feedback (closed-loop): 
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             (18) 

Substituting into the state space equations above, we have 

            (19) 

            (20) 

 

The poles of the FSF system are given by the 

characteristic equation of the matrix A − BK, det[SI − 

(A−BK)] = 0. Comparing the terms of this equation with 

those of the desired characteristic equation yields the 

values of the feedback matrix K (the PID gains Kp, Ki 

and Kd) which force the closed-loop eigenvalues to the 

pole locations specified by the desired characteristic 

equation. The state feedback controller can be used only 

if the system is controllable and it tracks the input signal 

or improves damping of the system. For a given system, 

the state feedback gain matrix K is not the same but 

depends on the desired closed loop pole location. This 

will also determine the speed and damping of the 

response.

 

 
Figure 11: Block Diagram of Pole-placement Controller 

 

The value of the obtained control parameters of 

the PID controllers using Ackermann’s formula through 

Matlab command are shown in Table 1 as follows:

 

Table 1: Parameters of the 3 PID controllers 

PARAMETERS CONTROLLER 1 CONTROLLER 2 CONTROLLER 3 

KP 0.8049 -15.3014 -43.0837 

KI 0.3162 0 0 

KD 0.6508 -5.6898 -4.3549 

 

B. Simulation 
The response of the linear double inverted 

pendulum plant controlled by the multi-PID controller is 

shown as below. Based on the control results, the double 

inverted pendulum system is stabilized by the multi-PID 

controller and the system, tracks the reference servo 

position, and does not saturate the DC motor.

 

Figure 11: Simulated response for position of servo arm using PID (θ) 
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Figure 12: Simulated response for position of bottom pendulum using PID (α) 

 

Figure 13: Simulated response for position of top pendulum using PID (φ) 

 

 
 

Figure 14: Controller Output (Input voltage to Servo) 

 

As shown by the responses in Figure 11, 12, 13 

& 14 the pendulum maintains its balance about the 

upright vertical position while tracking the 30 degree 

servo angle. 

 

V. INTERNAL MODEL CONTROL 
 

Every feedback controller is designed by 

employing some form of a model for the process that is 

to be controlled and/or the dynamics of the exogenous 

signal affecting the process. Consequently, the term 

“model-based” is often used here. 30- years ago, a new 

model-based controller design algorithm named 

“Internal Model Control” (IMC) has been presented by 

Garcia and Morari, which was developed upon the 

internal model principle to combine the process model 
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and external signal dynamics. In the control theorem, the 

control systems design is fundamentally determined by 

the steady state and dynamic behavior of the process to 

be controlled. It is an important issue to know the way in 

which the process characteristics influence the controller 

structure. The internal model control (IMC) viewpoint 

appeared as an alternative to traditional feedback control 

algorithms, which link the process model with the 

controller structure. 

The theory of IMC states that “control can be achieved 

only if the control system encapsulates, either implicitly 

or explicitly, some representation of the process to be 

controlled”. The main objective is to design an IMC 

Controller for the proposed pendulum system to reduce 

the effect of disturbance due to mismatching in 

modeling. A schematic of a block diagram of Internal 

Model Control can be found in Fig 15. 

 

Figure 15: Block Diagram of Internal Model Control 

 

where, Gp(s) represents the process itself. Gd(s) 

the process transfer functions of the disturbance,   p(s) 

the mathematical model (transfer function) of the 

process, and Q(s) the transfer function of the IMC 

controller. As may be observed from the block diagram 

of the IMC structure, there are two parallel paths starting 

from the manipulated variables u(s)  one passes through 

the real process  p(s) and the other passes through the 

model process   p(s). The role of the parallel containing 

the model   p(s) is to make possible the generation of the 

difference between the actual process output y(t) and an 

estimation prediction of the manipulated variable effect 

on the process output. Assuming that the process model 

is a perfect representation of the real process that is   p(s) 

= Gp(s). 

A. IMC Design Procedure 
The characteristic roots of the open-loop system 

are located at: 

  

[0 -29.5581 12.2802 7.2381 -10.1924 -2.1379]; 

 

Therefore, the system is unstable. To stabilize it, Ks is used to relocate the poles of the inner-loop at: 

[-4+2.3946j; -4-2.3946j; 2*([-4+2.3946j; -4-2.3946j]); 4*([-4+2.3946j; -4-2.3946j])]. 

Using pole placement method, the static state feedback gain vector, Ks is computed as: 

 

 

Now, the new transfer function is obtained as follows: 

    (21) 

where v(s) is the control input and θ(s) is the 

output, the angle of the rotary arm needs to be 

controlled. To avoid the complexity, SVD (singular 

value decomposition) based method (singular 

perturbation approximation) is used to reduce the order 

of the equation[3]. The reduced model thus obtained is 

given by: 

 

           (22) 

Now,   min is decomposed into   
+

min and   
-
min due to its non-minimum phase, where        

                   (23) 

          (24) 

 

To improve robustness, the effects of mismatch 

between the process, and process model should be 

minimized. Since the differences between process and 

the process model usually occur at the systems high 
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frequency response end, a low-pass filter f(s) is usually 

added to attenuate this effect. Thus, IMC is designed 

using the inverse of the process model in series with a 

low-pass filter[4]. A common filter choice that conforms 

to this requirement is: 

 

                          (25) 

where, the filter order n is selected large enough 

to make   
-
min proper. In addition to this criterion, the 

filter time constant λ must satisfy; 

 

            (26) 

Therefore, the suitably selected value of λ based 

on equation 26 is equal to 0.5. Final IMC controller on 

augmenting with a filter f(s) is given by,

 

           (27) 

Hence, the obtained transfer function of Q(s) is given by: 

          (28) 

 

B. Simulation The block diagram of the IMC control design is 

built in Matlab’s Simulink environment, as shown in Fig 

16.

Figure 16: Simulink model for control of RDIP system using IMC 

 

For the performance evaluation of the designed 

controller, a set point tracking is observed between t = 0s 

and t = 100s. The controller results of the linear double 

inverted pendulum are shown as below. According to the 

control results, the double inverted pendulum system is 

successfully stabilized by the IMC controller and the 

system, tracks the reference servo position, and does not 

saturate the dc motor. 
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Figure 17: Simulated response for position of rotary arm using IMC (θ) 

 

 

Figure 18: Simulated response for position of bottom pendulum using IMC (α) 

 

 
 

Figure 19: Simulated response for position of top pendulum using IMC (Φ) 
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Figure 20: Controller Output (Vin to Servo) 

 

As shown by the responses in Figure 17, 18, 19 

& 20, the pendulum maintains its balance about the 

upright vertical position while tracking the ±30 degree 

servo angle. 

 

VI. CONCLUSION 
 

The Rotary Double Inverted Pendulum (RDIP) 

system is a classic problem in control theory. It is used 

in many applications. It is inherently an unstable but 

completely controllable system using various controllers 

available which can be used to hold the pendulum at the 

upright position. The controllers should maintain the 

bottom and top pendulum angle (α and φ) at 0
o
 to the 

vertical axis and the rotary arm is maintained at for its 

reference. 

From Table 2, we see that the LQR controller is 

seen to produce comparatively more sluggish response 

and takes around 5 seconds to stabilize the pendulum. 

The IMC controller has a faster response compared to 

LQR and PID controllers. The PID controller has faster 

response than LQR Controller but a greater overshoot is 

observed compared to IMC and LQR controller. Overall, 

considering all the parameters we can say that Internal 

Model Control based controllers are more preferred 

which shows best results. 

 

Table 2: Controller comparison based time domain specification 

CONTROLLER RISE TIME SETTLING TIME OVERSHOOT STEADY STATE ERROR 

LQR CONTROLLER 2.7463 5.3726 3.9089X10−04 -4.601X10−7 

PID CONTROLLER 0.7670 4.9668 26.8016 -3.227X10−7 

IMC 1.6017 3.0190 0.0158 3.132X10−7 

NN CONTROLLER 2.9060 5.6467 2.8644X104 -2.731X10−7 

 

The figure given below shows a clear 

comparison of the three controllers (from top-bottom): 

Linear Quadratic Regulator (LQR) based State Feedback 

Controller, PID controller and Internal Model Controller 

(IMC) controller. 

 

 
 

Figure 6.1: Step response of servo arm using LQR Controller 
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Figure 6.2: Step response of servo arm using PID Controller 

 

 
Figure 6.3: Step response of servo arm using Internal Model Control 
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